Kinetic Analysis of T7 RNA Polymerase Transcription Initiation From Promoters Containing Single Stranded Regions

Maribeth Maslak and Craig T. Martin, Biochemistry 32, 4281-4285, 1993

T7 RNA polymerase is highly specific for the initiation of transcription from a relatively small consensus promoter sequence. Previous footprinting studies suggested that the enzyme binds specifically to a fully closed duplex form of the promoter, recognizing functional groups along one face of the helix [Muller, D. K., Martin, C. T., & Coleman, J. E., (1989) Biochemistry 28, 3306-3313]. Steady state kinetic analysis of oligonucleotide-based promoters shows that removal of the nontemplate strand completely within the message region of the DNA (positions +1 through +5) results in no change in binding (as reflected in the parameter Km), and a two-fold increase in kinetics (as reflected in kcat). Further deletion of the nontemplate strand as far upstream as position -4 has no effect on binding, and although deletion upstream through position -6 weakens binding, specific initiation continues at a high rate. The temperature dependence of the initiation kinetics show a single apparent activation energy of ~=26 kcal/mole for the fully duplex promoter. Similar measurements on the promoter lacking the nontemplate strand in the message region show that less than 10% of this barrier is related to melting of the downstream region of the promoter. These results lead us to revise the previous model for recognition to include specific binding to a form of the promoter which is duplex upstream of about position -6 and melted downstream through the start site. Within the melted region, the polymerase interacts significantly only with the template strand of the promoter DNA.

PMID: 8476857 DOI: 10.1021/bi00067a017