
Syllabus - Chem 728 - Physical Biochemistry 
Tu 2/2 Overview - EM Radiation, Energies, Quantum nature of 

everything - Lec Notes - Video

Th 2/4
Electronic Spectra II - Transition dipole moments; 
symmetry; Einstein coeff; Boltzmann distrib - Lec Notes 
- Video - extra tutorial

Tu 2/9 Circular Dichroism (& Linear) - demo of polarization - Lec 
Notes - Video

Th 2/11 Fluorescence I - Jablonski Diagram, fundamentals - Lec 
Notes - Video - Quenching supplement

Tu 2/16 Fluorescence II - Lifetimes, quenching of all sorts - Lec 
Notes - Video

Th 2/18 Fluorescence III - Lifetimes, FRET (and dyes, beacons), 
anisotropy - Lec Notes - Video

Tu 2/23 Fluorescence IV - Fluorimeters, Anisotropy, Intro to 
single molecule - Lec Notes - Video

Th 2/25 In-class Quiz; Fluorescence V - TIRF, Laser traps - Lec 
Notes - Video

Tu 3/2 Single molecule (cont), AFM, Scattering - Lec Notes - 
Video

Th 3/4 Scattering, FLIM-FRET, Aniso imaging, Bit of R - Lec 
Notes - Video - DLS Long Video

Tu 3/9 Intro to R - be sure that your computer has R installed - 
Lec Notes (No video)

Th 3/11 Curve fitting - Lec Notes - Video - (big ugly R script)

Tu 3/16 R wrap up, Error, Sig Figs, Intro thermodynamics - Lec 
Notes - Video (partial)

Th 3/18 Ligand Binding - Lec Notes - Video - R script

https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%202-2-21.pdf
https://umass-amherst.zoom.us/rec/share/Xq9xBOms2XCTBv_5nRQXLqV783iVYsr2yyQyyZorcueqPV6pnoqafsI5pnq3P07s.VpBrCIP62fYJmz8a
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%202-4-21.pdf
https://umass-amherst.zoom.us/rec/share/x7TuzEz5HTEHKo_IbrkWDhpFxkTNocI6ZfsQyjDJUhOFEvVEHgDznkwPCMUSKCIp.bpPtDusZN2IrnIex
https://cddemo.szialab.org/
http://cddemo.szialab.org/
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch%20728%20Lec%202-9-21.pdf
https://umass-amherst.zoom.us/rec/share/2nrITGioSXruJbwJhmNilDtKl9LOi5GdJWBJNj8hARGFg8nlwZixs2I5InolHco.KJbn3gNL0ftbNDLz
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%202-11-21.pdf
https://umass-amherst.zoom.us/rec/play/Od5MJ99MWui1JhBUj-zbWJP88Jbvn3yeqhudu5XocvIqCfh1xdT99qlHnknx3b9Ab87MHSI30R7LNEHP.ALj3YOEnTSC3uvKl?continueMode=true&_x_zm_rtaid=WbtTrTm4TLShv1GuCfScKw.1613430023598.9c62c4b1f5b7412debc5d4c61db4775e&_x_zm_rhtaid=111
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Static%20%20Dynamic%20Quenching.pdf
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%202-16-21.pdf
https://umass-amherst.zoom.us/rec/share/fpnFbnnpid_d1LKldV8futi6RL-2m9gHiC_AcZd-MzbiVeFCSIAkoLfgKjSQ-Bco.LHc6ZV1s5CwidQ44
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%202-18-21.pdf
https://umass-amherst.zoom.us/rec/share/SaS3uoTx7emOkroTXdjl8Lwute6FJ2uws1eMgXrGWlgj1zukNWHQ35yYj5k74OYP.Eof5IkP03R6w9tKv
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%202-23-21.pdf
https://umass-amherst.zoom.us/rec/share/6NXqSE0NOzkUGGupqH74ZAL3_uo20NrUkTBN6_FeHPLQdfJHQYwn25AgGHOOvFpJ.8wN6_oy2tYNkNZWV
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%202-25-21.pdf
https://umass-amherst.zoom.us/rec/share/0Dqi5n6JqZuZSPQpPZ0hJ0si9FwXk7WjcBre6hRksHztRpq7Ec9Ans3kiaRj27G1._9hd8JlWF-ZWNg1C
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%203-2-21.pdf
https://umass-amherst.zoom.us/rec/share/w88qzH8vQxnyBV0LV9eGIBIwYgFlZZsy7PxhGmF0kFVI5ALytFPeHhT-vJ5KRkJ2.3lHKVGGrhkHJqYw4
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%203-4-21.pdf
https://umass-amherst.zoom.us/rec/share/ZHNWVb1HuY70Liged2szWg5Qp_Fxx4agQ4tOQdZDl8aeVyi2caW6SZzd4Uxxk154.GPcWUcoZBdkw0dLt
https://resources.nanotempertech.com/prometheus/dls-easily-explained-what-it-tells-you-about-your-protein
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%203-9-21.pdf
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%203-11-21.pdf
https://umass-amherst.zoom.us/rec/share/WjYtubPCPIeFT7RDV4JnYF4chp-_E81KrbnemIfX3WYZ-kHdotPylr2rZ5y8cYm3.mqY50Mj90lQky1e9
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/RScriptExamples.txt
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%203-16-21.pdf
https://umass-amherst.zoom.us/rec/share/bWM1K2gsceq9MVMdNku9KakyQ-tkbpdbuonLreTYDBi8keO6Omh8Pjgb-3CNQHMg.I4aHgVXBlZUy23df
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%203-18-21.pdf
https://umass-amherst.zoom.us/rec/share/hsh6KRxaumGl2skIWr-1pfrBqaynN40bOOCms2jJlCnJsjsREXmn0JJ6LTuspE4a.xKTyzg-gnRQyByIn
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/R%20Examples%20Ligand%20Binding.txt


Tu 3/23 Kinetics - 21st Century approaches - Lec Notes - Video - 
R script - Adv R script

Th 3/25 Hands on with R - simulating kinetics - Lec Notes - 
Video - R script - Inhib script

Tu 3/30 Cooperativity - Lec Notes - Video - Coop Review 
Article - Adv Coop @ Wikipedia!

Th 4/1 Isothermal Titration Calorimetry - Lec Notes - Video

Tu 4/6 Adv ITC & UV-Vis practicals - Lec Notes - Video - R 
script

Th 4/8 Surface Plasmon Resonance & Spectral Deconvolution - 
Lec Notes - Video - R script

Tu 4/13 Bio-Layer Interferometry / Thermophoresis - Lec Notes - 
Video

Th 4/15 SEC-MALS - ZetaSizer - Doppler DLS - Lec Notes - 
Video

Tu 4/20 Wednesday class schedule - No class

Th 4/22 Kinetics Workshop: [ Transcr Term ], [Transcr Inhib ], 
 [ 2ColorReporter ] video

Tu 4/27 Guest Lecture - heliX dynamic biosensors - Video -

Th 4/29 In-class Quiz;  extras

Tu 5/4 Summary Wrap Up - Lec Notes - Video

https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%203-23-21.pdf
https://umass-amherst.zoom.us/rec/share/O4b6QzfAquyutDFJ0gDBwkUpdKxtG9mgnWnVmpKO6r6LzLyCb0sZuWeg4xjnCPjd.r1bb0MPC4JlCSgcj
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/IntegrRateEqs.txt
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/IntegrRateEqsAdv.txt
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%203-25-21.pdf
https://umass-amherst.zoom.us/rec/share/14FhU1_NSpJZ1GJ4uO5QnybkQpZ0oM_O6-dqKR2LbxES7ARG_beMPuQeRRYbRtGQ.4DIeVyq-2zBZ_0Pt
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/EnzymeKinetics.txt
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/EnzymeKineticsInhib.txt
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%203-30-21.pdf
https://umass-amherst.zoom.us/rec/share/G5J3r3DYzFPtjUf6VqoV08ik5HwGUsfn3ORC6wJHmDcBnODNu8A3I7ZzU4-0W64i.osOh9Z5wT0tpLQ95
https://doi.org/10.1371/journal.pcbi.1003106
https://en.wikipedia.org/wiki/Cooperative_binding
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%204-01-21.pdf
https://umass-amherst.zoom.us/rec/share/CXYfEteT15vNcHSOmOfn3or_E5uvUMWvs6OZshPnhRRD_U7niy2pQAmpNkO5AC3m.5DJ4wtrY1GgPI6ZZ
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%204-06-21.pdf
https://umass-amherst.zoom.us/rec/share/zOmMKWJq1PUttCFAK3Y5rn1vs_tr3xclTolWe6lmWaVS_FpOOtB5evI2j-t58dtA.f5X9k5UDvyTOQPp5
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/convolve.txt
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%204-08-21.pdf
https://umass-amherst.zoom.us/rec/share/LGlcxwPsQm-9RNbYpS3IrN1bp9054T0tqNTLB_9Cr_6vm6iQ4mKu_tfA6ipJedCQ.WwnLjVJsYACvckby
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/spectrum.txt
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%204-13-21.pdf
https://umass-amherst.zoom.us/rec/share/_QcspxHXeng9QjiUI4cFnlte6KcxGQhtwMboiBKaxmQu0shRpjK5PpJDVuYaVp7G.d3dBQNyoDQLHe-cr
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%204-15-21.pdf
https://umass-amherst.zoom.us/rec/share/ZZiydiVmz_TZG2dD1DTMFxvMJ5v8FDKwCZgmuDhlWL6IPD65wSCewKftPVF86vRg.IQBuJFTTBevLLDvw
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Kinetics%20Projects%20-%20Hands%20On.pdf
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/TranscrTermination.txt?time=1619099891556
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/TranscriptionInhibition.txt?time=1619100456767
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/RNATwoColorReporter.txt?time=1619099957933
https://umass-amherst.zoom.us/rec/share/RokQRT5kWPkDUnhtFdSfS0tuMRtToe9jBr438mtdsMP_9jkdw620DSxesYDawRri.YwvfRbDZzixapypK
https://www.dynamic-biosensors.com/switchsense/
https://umass-amherst.zoom.us/rec/share/lsrc9jQzfQWDsdOOAfyP4yhXIIUJ7IV151yYyTFiM54nwmzYi2pa6mXerTg2xG5b.a85jvp26vesea5T7
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Chem%20728%20Recap.pdf
https://umass-amherst.zoom.us/rec/share/U2MHh-RoYgYOyRncC-MbDBfvsqIFyvnd4-_bgVVt4txSa1dO39F67KY5XzbqV8Gp.zrcqp0ndfBs7Nwsi


CHEM728 Physical Biochemistry Spring 2021
• Tu/Th  8:30a-9:45a    Moodle-provided Zoom session

• Understanding chemical, physical, and biological properties of proteins and nucleic acids.

• 1) Thermodynamic and Kinetic behavior and experiment.

• 2) Spectroscopic tools for understanding structure (static and dynamic) and activity (binding, 
catalysis, etc) of biopolymers.

• The course will not (this year) include hands-on activities with, but will discuss in depth, the tools 
available in the Institute for Applied Life Sciences (IALS) Biophysical Characterization Facility. 

• Instructor: Craig Martin   (message through Moodle)

• Prerequisites: BIOCHEM 423, 523, or CHEM 423, and CHEM 471 or 475.
★ Or see Prof Martin

https://www.umass.edu/ials/biophysical-characterization
mailto:%20cmartin@chem.umass.edu


CHEM728 Physical Biochemistry Spring 2021
• Tu/Th  8:30a-9:45a    Moodle-provided Zoom session

• Understanding chemical, physical, and biological properties of proteins and nucleic acids.

• 1) Thermodynamic and Kinetic behavior and experiment.

• 2) Spectroscopic tools for understanding structure (static and dynamic) and activity (binding, 
catalysis, etc) of biopolymers.

• The course will not (this year) include hands-on activities with, but will discuss in depth, the tools 
available in the Institute for Applied Life Sciences (IALS) Biophysical Characterization Facility. 

• Instructor: Craig Martin   (message through Moodle)

• Prerequisites: BIOCHEM 423, 523, or CHEM 423, and CHEM 471 or 475.
★ Or see Prof Martin

Textbooks / Lecture Notes
Modern Biophysical Chemistry, 2nd edition
• by Walla, Peter Jomo
• ISBN: 9783527337736

Full lecture notes are available here in Moodle and should be sufficient for most of you.
Last year's notes are available here. This year's notes will be posted below as they become available (see 
Syllabus, below)

Binding and Kinetics for Molecular Biologists
• by Goodrich, James A.; Kugel, Jennifer F. - Cold Spring Harbor Lab Press
• ISBN: 9781621820796
• Sadly, this book is out of print. Search eBay, perhaps?

https://www.umass.edu/ials/biophysical-characterization
mailto:%20cmartin@chem.umass.edu
https://umass.ecampus.com/course-list.asp?autocourselist=1&c=%7C3046767&s=139177&missing=#
https://umass.ecampus.com/course-list.asp?autocourselist=1&c=%7C3046767&s=139177&missing=#
https://moodle.umass.edu/pluginfile.php/2533715/course/section/611351/Chem%20728%20Lec%20Notes%20-%202018.pdf


R Statistical Package
Exams and homework/projects will require the use of the open source R statistical 
package, freely available for Windows and Macs. As you learn and explore, please 
post your experience to the R Moodle Forum for this course. Questions? Tips? 
Anything…

CHEM728 Physical Biochemistry Spring 2021
• Tu/Th  8:30a-9:45a    Moodle-provided Zoom session

• Understanding chemical, physical, and biological properties of proteins and nucleic acids.

• 1) Thermodynamic and Kinetic behavior and experiment.
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• The course will not (this year) include hands-on activities with, but will discuss in depth, the tools 
available in the Institute for Applied Life Sciences (IALS) Biophysical Characterization Facility. 

• Instructor: Craig Martin   (message through Moodle)

• Prerequisites: BIOCHEM 423, 523, or CHEM 423, and CHEM 471 or 475.
★ Or see Prof Martin

https://www.umass.edu/ials/biophysical-characterization
mailto:%20cmartin@chem.umass.edu


Grading
• 30% Take Home Exam 1
• 30% Take Home Exam 2
• 10% In-class Quizzes
• 20% Homework / Projects
• 10% Class participation, including in Moodle Forums (required)

CHEM728 Physical Biochemistry Spring 2021
• Tu/Th  8:30a-9:45a    Moodle-provided Zoom session

• Understanding chemical, physical, and biological properties of proteins and nucleic acids.

• 1) Thermodynamic and Kinetic behavior and experiment.

• 2) Spectroscopic tools for understanding structure (static and dynamic) and activity (binding, 
catalysis, etc) of biopolymers.

• The course will not (this year) include hands-on activities with, but will discuss in depth, the tools 
available in the Institute for Applied Life Sciences (IALS) Biophysical Characterization Facility. 

• Instructor: Craig Martin   (message through Moodle)

• Prerequisites: BIOCHEM 423, 523, or CHEM 423, and CHEM 471 or 475.
★ Or see Prof Martin

https://www.umass.edu/ials/biophysical-characterization
mailto:%20cmartin@chem.umass.edu
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ugly graphics, not for publication

UMass license, $$$ after

Windows only UMass license, $$$ after

programming interface

Feature-rich

Great graphics

Feature-rich

Great graphics

Cluttered interface programming interface

Feature-rich

Great graphics

Open Source - Free!
Wide user community

UMass license, $$$ after

Wide user community

good for simple things, business

widely used

good for simple things, business
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Survey Results

What else would you like to learn?

I wouldn't mind knowing more about crystallography and Cryo-EM

- Differential Scanning Calorimeter

- Basic ideas about curve fitting, Fourier transform, and spectral deconvolution

- Allosteric and cooperative binding 

Some examples for real-life applications of the listed techniques would be nice.

Common mathematical methods to model molecular behavior. 

N/A my main goal was to learn theory behind techniques I plan to use in my research.



Survey Results
Characteristics of a Great Course

Good slides and videos posted on the website to allow for looking back if technical difficulties occur  

Access of relearning from available recordings  

Creating a comfortable space for discussions 

Discussion 

Encouraging/opportunities for participation 

Engaging 

Lecture engagement 

Interactive Clear presentation



Feb 1, 2021

Quantum Nature of Matter and Energy

What is electromagnetic radiation?



Basics
What spectroscopic difference(s) can 
you predict about these molecules?



Electromagnetic Radiation

E = hv = hc
λ



Microwave ovens
Cell phones

Sunburn

WFCR

“Radiation”



Electromagnetic Radiation
E = hv = hc

λ

Classical:  electrons can 
have any energy

Eground

Eexcited

Eground

Eexcited

QM:  electrons can have only 
discrete (quantized) energies



Transition Dipole Moment

Why can’t a photon excite 1s to 2s?

Can three perpendicular photons excite 1s to 2s?
Why not?



Transition Dipole Moment
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Transition Dipole Moment

Initial orbitalFinal orbital
Operator
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Transition Dipole Moment

ψ 2µψ 1 ∂x ∂y ∂z
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Transition Dipole Moment
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Formaldehyde: π to π*
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Basics
What spectroscopic difference(s) can 
you predict about these molecules?



Theory and Experiment

Trp

Tyr

Phe

280 nm

274 nm

257 nm

5050 M-1 cm-1

1440 M-1 cm-1

220 M-1 cm-1

OH

NH

(Electronic) environment also matters!



Take home lesson

• Symmetry in a molecule (more correctly, in 
an electronic orbital) allows the possibility 
that transitions will be forbidden

• Even changes in the molecule’s (electronic) 
environment can influence this.

• Hyperchromic effect



Time Dependent Schrödinger Equation
(polarized light)

Transition probability maximal when the 
energy of the photon exactly matches 
the difference in energy between the 

ground and excited states

But that is not enough!
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Time Dependent Schrödinger Equation
(polarized light)

Transition probability maximal when the 
energy of the photon exactly matches 
the difference in energy between the 

ground and excited states

But that is not enough!

Eb

Ea

transition 
dipole 

moment
Light 

intensity
Energy Match



Time Dependent Schrödinger Equation
(polarized light)

For energy exactly matching the transition energy:

For non-polarized light, integrate over all space:
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“Probability of transition”
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Time Dependent Schrödinger Equation

For energy exactly matching the transition energy:

For non-polarized light, integrate over all space:

“concentration of light”What does 
this look like?

“Probability of transition”

“concentration of reagent”“Probability of reaction”



Time Dependent Schrödinger Equation

“concentration of light”What does 
this look like?

“Probability of transition”

“concentration of reagent”“Probability of reaction”



Absorption of Light Inducing a Transition



Absorption of Light Inducing a Transition

Boltzmann Equilibrium



log ∆G ∆G nb/na

2 100 5.7964E-74

1 10 4.7459E-08

0 1 1.852E-01

-1 0.1 8.4482E-01

-2 0.01 9.8328E-01

-3 0.001 9.9832E-01

-4 0.0001 9.9983E-01

-5 0.00001 9.9998E-01



Absorption of Light Inducing a Transition

∆E large 0
∆E small infinity

But remember that as more systems go 
up than down, the system will no longer 

be at Boltzmann equilibrium

The populations will equalize
0

SATURATION



Absorption of Light Inducing a Transition

∆E large

∆E small

NMROptical Abs
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Peptide bond

Bullheller, Rodger, & Hirst (2007) Phys Chem Chem Phys 9, 2020-2035

Whitmore & Wallace (2007) 
Biopolymers 89, 392-400

http://www.rsc.org/publishing/journals/CP/article.asp?doi=b615870f
http://www3.interscience.wiley.com/cgi-bin/fulltext/116323652/HTMLSTART


Linear dichroism

Bullheller, Rodger, & Hirst (2007) Phys Chem Chem Phys 9, 2020-2035

<π|µ|π*> = <π|µx|π*> + <π|µy|π*>

allowed (eoo)(eee)(oeo)
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http://www.rsc.org/publishing/journals/CP/article.asp?doi=b615870f


Linear dichroism

<π|µx|π*>

allowed

(eoo)(eee)(oeo)

non-zero
dx dy dz



Linear dichroism

<π|µy|π*>

(eeo)(eoe)(oeo)
zero

zero
dx dy dz

forbidden



Linear dichroism

<π|µz|π*>

(eeo)(eee)(ooo)

zero
dx dy dz

zero

forbidden



Circularly polarized light - preferential absorption

DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,   (2012) Nature 483, 311-314
Anton Kuzyk1, Robert Schreiber, Zhiyuan Fan ,Günther Pardatscher1, Eva-Maria Roller, Alexander Högele, Friedrich C. Simmel1, Alexander O. Govorov & Tim Liedl

Circular dichroism of self-assembled gold nanohelices. Experimental (a 
and c) and theoretical (b and d) CD spectra of left-handed (red 
lines) and right-handed (blue lines) helices of nine gold 
nanoparticles show characteristic bisignate signatures in the visible.  … c, 
The CD signal increases owing to collective plasmonic enhancement by a 
factor of 400 for assemblies of nanoparticles with 16-nm diameter, 
rendering the noise in the spectra invisible (as in a). The peak position for 
left-handed helices exhibits a red-shift from 524 nm to 545 nm. d, The 
corresponding theoretical calculation predicts a 500-fold enhancement of 
the signal and a peak shift from 523 nm to 534 nm. The CD spectra were 
recorded at concentrations of nanohelices of 1.5 nM in a and 0.4 nM in 
c.The insets in a and c show TEM images of left-handed (red frame) and 
right-handed (blue frame) nanohelices

Experiment Theory



Circularly polarized light

Bullheller, Rodger, & Hirst (2007) Phys Chem Chem Phys 9, 2020-2035

http://www.rsc.org/publishing/journals/CP/article.asp?doi=b615870f


Peptide bond

Bullheller, Rodger, & Hirst (2007) Phys Chem Chem Phys 9, 2020-2035

Whitmore & Wallace (2007) 
Biopolymers 89, 392-400

http://www.rsc.org/publishing/journals/CP/article.asp?doi=b615870f
http://www3.interscience.wiley.com/cgi-bin/fulltext/116323652/HTMLSTART


Circular Dichroism

The electric field of circularly polarized light causes a linear displacement of charge (along 
the bond) in the π → π* transition. The magnetic field on the other hand induces a 
circulation of charge. These two interactions occur at the same time, and the combination 
of linear and circular displacement leads to a helical movement of electrons with which left 
and right circularly polarized light interact differently, leading to the phenomenon of CD

The origin of protein CD is the chiral nature of the polypeptide backbone, whose electronic 
transitions give rise to distinctive bands in the far UV. phenomenon of CD

The coupling of electric dipoles (π → π* electronic transition) in a repeating helical 
structure leads to one in-phase combination with a net polarization parallel to the helix axis 
and two out-of-phase combinations with a net polarization perpendicular to the axis.



Circularly polarized light

unitless

M-1 cm-1

(M aa)-1 cm-1

J = QA
Cl

M-1 cm-1









Bullheller, Rodger, & Hirst (2007) Phys Chem Chem Phys 9, 2020-2035

Circular Dichroism - peptide bonds

How to 
interpret?

http://www.rsc.org/publishing/journals/CP/article.asp?doi=b615870f


But first…
Zhaolin and Jian have a discussion going in our Moodle 
Forum on the nature of the transition dipole moment

https://en.wikipedia.org/wiki/Transition_dipole_moment

According to Schroedinger, the electron gets from state 2 to state 
1 by a continuous transition through intermediate superposition 
states. So halfway through our example, the electron is in a state 
that is a superposition of the 2s and 2p states.  

The transition dipole moment is then the actual dipole moment 
evaluated for the superposition of states.

Wavefunction Probability

1s

2p

linear 
combination 
of the two

Note that the “position” of the electron is moving 
(oscillating) in time - an oscillating dipole!

real part
imaginary part



But first…
Zhaolin and Jian have a discussion going in our Moodle 
Forum on the nature of the transition dipole moment

https://en.wikipedia.org/wiki/Transition_dipole_moment

Note that 1s -> 2p transition is “forbidden” - why?

Wavefunction Probability

1s

2p

linear 
combination 
of the two

real part
imaginary part



From last time
Nathanael asked about circularly polarized light and 

linearly polarized light. In fact, you can make one with 
combinations of the other. See this Kahn Academy video 

https://www.khanacademy.org/science/physics/light-waves/
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µy

µx+µy
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From last time
Nathanael asked about circularly polarized light and 

linearly polarized light. In fact, you can make one with 
combinations of the other. See this Kahn Academy video 

https://www.khanacademy.org/science/physics/light-waves/
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In the reel world

3D movies use circular polarization and left vs right 
absorbing chromophores!!

Where have you used 
circular dichroism 
outside of science?



Bullheller, Rodger, & Hirst (2007) Phys Chem Chem Phys 9, 2020-2035

220 nm

Circular Dichroism - peptide bonds

http://www.rsc.org/publishing/journals/CP/article.asp?doi=b615870f


Bullheller, Rodger, & Hirst (2007) Phys Chem Chem Phys 9, 2020-2035

220 nm

Near UVFar UV

Circular Dichroism - peptide bonds

≈193 nm

http://www.rsc.org/publishing/journals/CP/article.asp?doi=b615870f


Near UVFar UV

Circular Dichroism - peptide bonds

≈193 nm Traditional approaches for 
discerning structure from CD 
include using spectral “basis 
sets.” The fit involves adding 
together varying ratios of each 
contributor until the summed 
spectrum best fits the 
experimental spectrum. 

Simple fits might include only 
2-3 contributing spectra, 
others might use more 
complex basis sets (but see 
warning to come about doing 
so!).



Whitmore & Wallace (2007) Biopolymers 89, 392-400

Near UVFar UV
VUV

(very low wavelength)

SRCD
(synchrotron radiation CD)

helical

sheet

sheet

poly-pro

Absorption by H2O

http://www3.interscience.wiley.com/cgi-bin/fulltext/116323652/HTMLSTART


On-line Tools

DICHROWEB     http://www.cryst.bbk.ac.uk/cdweb

DICHROCalc     http://comp.chem.nottingham.ac.uk/dichrocalc/

Predict 2° structure from spectra

Predict spectra from 3D structure

http://dichroweb.cryst.bbk.ac.uk/html/home.shtml/
http://www.cryst.bbk.ac.uk/cdweb
http://comp.chem.nottingham.ac.uk/dichrocalc/
http://www.cryst.bbk.ac.uk/cdweb


CD Spectroscopy

DICHROCalc     http://comp.chem.nottingham.ac.uk/dichrocalc/

Predict spectra from 3D structure
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CD Spectroscopy
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CD Spectroscopy

DICHROCalc     http://comp.chem.nottingham.ac.uk/dichrocalc/

Predict spectra from 3D structure
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CD Spectroscopy

DICHROCalc     http://comp.chem.nottingham.ac.uk/dichrocalc/

Predict spectra from 3D structure
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CD Spectroscopy

DICHROCalc     http://comp.chem.nottingham.ac.uk/dichrocalc/

Predict spectra from 3D structure
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Not so simple
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Ab initio and other 
computational approaches are 
trying to go beyond using 
simple basis sets. As they do, 
they try to include more and 
more sophisticated 
interactions, including 
backbone-backbone charge 
transfer transitions, and 
aromatic aa-backbone CT 
transitions. Most of the 
changes are toward the far UV, 
as shown at right.
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CD Spectroscopy

DICHROCalc     http://comp.chem.nottingham.ac.uk/dichrocalc/

Predict spectra from 3D structure
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CD - things to be careful of
There is the possibility that if used in a blackbox manner, users can produce less than ideal (or even 
erroneous) conclusions from CD. Thus a number of precautions need to be considered in the use and 
interpretation of the results.

1. The amount of data must be sufficient to solve for the desired number of secondary structure 
components. Data that only extends to 200 nm contains at most two eigenvectors, and hence the 
results should only be interpreted in terms of two components (i.e., how much is helix and how much 
is not helix). Any interpretation of such data that attempts to deconvolute into more components 
than these will be an over-interpretation of the data. 

2. A low value for the NRMSD or any other goodness-of-fit parameter does not always indicate it 
represents a correct solution. A low NRMSD value (0.1) is a necessary but not sufficient condition for 
accuracy in secondary structure determination. However a high value is a good indication that either 
the analysis has gone wrong (often because the magnitude of the spectrum is incorrect) or the 
reference database is inappropriate for the characteristics of the protein being analysed. It is also 
important to note that some algorithms, notably CDSSTR, nearly always produce the lowest NRMSD 
due to the way they fit the data, but they very often are not the most correct solution.[36] 

3. Reference databases derived from globular soluble proteins are not appropriate for the analysis of 
proteins (or peptides) in nonaqueous solutions.[38] (4) It is absolutely essential to have precisely 
correct concentration measurements (not just estimates from colorimetric assays) and an accurate 
measurement of the cell pathlength (the values cited by the manufacturers, especially for very short 
pathlengths, can err by 30% or more).[42] The consequence of concentration and pathlength errors 
is that the magnitude of the spectrum produced will err by a corresponding amount and result in 
incorrect analyses. 

Whitmore & Wallace (2007) Biopolymers 89, 392-400

http://www3.interscience.wiley.com/cgi-bin/fulltext/116323652/main.html,ftx_abs#BIB36
http://www3.interscience.wiley.com/cgi-bin/fulltext/116323652/main.html,ftx_abs#BIB38
http://www3.interscience.wiley.com/cgi-bin/fulltext/116323652/main.html,ftx_abs#BIB42
http://onlinelibrary.wiley.com/doi/10.1002/bip.20853/full


Detect conformational change?
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Much better for local helix to coil 
transition in a relatively small protein

Large structural change, but 
much of it is rigid body motion



Structures and abbreviations

Johnson N. P. et.al. PNAS 2004;101:3426-3431

©2004 by National Academy of Sciences

2-aminopurine dimer

Absmax ≈ 300 nm

http://www.pnas.org/content/101/10/3426.full


CD Spectra of ds oligonucleotides containing AP dimer

©2004 by National Academy of Sciences

CD Spectra of ds oligonucleotides containing AP dimer. (a) CD per mol nucleotide residues. (b) CD per mol 
AP residues. Oligonucleotides: ----- (dark solid line), --XX-- (dashed line), and --XX-- R (light solid line). 

DNA 
(no 2AP)

DNA 
(2AP-2AP)

Johnson N. P. et.al. PNAS 2004;101:3426-3431

http://www.pnas.org/content/101/10/3426.full


CD Spectra of ds oligonucleotides containing AP

©2004 by National Academy of Sciences

CD Spectra of ds oligonucleotides containing AP. (a) CD per mol nucleotide residues. (b) CD per mol AP residues. 
Oligonucleotides: --------- (triangles), --X-- (squares), and --XGX-- (circles). 

A  number  of  experiments  were  carried  out  to  further  characterize  the  328-nm peak  of  the  CD spectra. 
Double-stranded oligonucleotides containing a single AP residue (--X--) or two AP residues separated by an 
intervening base (--XGX--), showed similar CD spectra above 300 nm (Fig. 4). These spectra had a single peak 
with maximum intensity at 320 nm, differing markedly from the CD spectrum of the --XX-- species (Fig. 3).

Johnson N. P. et.al. PNAS 2004;101:3426-3431

http://www.pnas.org/content/101/10/3426.full#F4
http://www.pnas.org/content/101/10/3426.full#F3
http://www.pnas.org/content/101/10/3426.full


Structure of a guanine-PC base pair (a), and sequences and nomenclature of ss oligonucleotides 
used in this study (b). ssPCC is the complementary strand used to form the ds oligonucleotides 

dsPC0, dsPC1, dsPC2, dsPC1A, and dsPC1B.

Johnson N. P. et.al. PNAS 2005;102:7169-7173

©2005 by National Academy of Sciences

pyrrolo-dC
dG

how is this 
different from dC?

http://www.pnas.org/content/102/20/7169


Low-energy CD spectra of 7 µM ss oligonucleotide and 3.5 µM ds oligonucleotides

©2005 by National Academy of Sciences

Johnson N. P. et.al. PNAS 2005;102:7169-7173

http://www.pnas.org/content/102/20/7169


Datta et al, J Mol Biol 360, 800-813 (2006)

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WK7-4K425F6-4&_user=1516330&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000053443&_version=1&_urlVersion=0&_userid=1516330&md5=4cac3e66d81d00f39204acb2b90289ea


Circular Dichroism Recap - Practical Stuff

• Can try to estimate 2° structure of protein whose 
structure is not known.
• Two approaches

• Fit to 2 or more basis sets (be careful!)
• number of sets fit
• using appropriate basis sets

• Fit to ab initio calculations (be careful!)
• Not done so much anymore…

• Can measure conformational changes
• Mostly empirical (be careful!)
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Electronic Energy Levels
Use ethylene (ethene) as a simple model

CH2=CH2

π

π*

S1

(singlet) (singlet) (triplet)

(ground) (excited) (excited)

S0 T1 S0 T1

S0 S1
Allowed, subject to 

Forbidden - why?

Requires TWO transitions:
change in orbital AND spin flip

Remember this for later

ψ 2µψ 1 ∂x ∂y ∂z
−∞

+∞

∫
−∞

+∞

∫
−∞

+∞

∫



Why is fluorescence emission always at longer 
wavelength than the exciting absorbance?

(Stokes shift)
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Electronic Energy Levels
Use ethylene (ethene) as a simple model

CH2=CH2

π

π*

S1
(singlet) (singlet)
(ground) (excited)

S0

CH2=CH2 CH2-CH2

CH2=CH2

CH2-CH2

Bond order = 2

Bond order = 1

Bond length = 1.3 Å

Bond length = 1.5 Å



But at T > 0K, bonds vibrate!

Bonds lengths oscillate in length!

Higher excited vibrational states 
vibrate with bigger amplitude

Bond length

Energy

vibronic levels
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Use ethylene (ethene) as a simple model

CH2=CH2

π

π*

S1

(singlet) (singlet)

(ground) (excited)

S0

Double bond Single bond

What can we say about bond lengths?

Bond length

Energy
S0

S1

vibronic levels

Bond order = 2 Bond order = 1
Bond length = 1.3 Å Bond length = 1.5 Å
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Use ethylene (ethene) as a simple model

CH2=CH2

π

π*

S1

(singlet) (singlet)

(ground) (excited)

S0

Double bond Single bond

What can we say about bond lengths?

S0 - short bond
S1 - long bond

But nuclei move much 
more slowly than electrons!

Bond length

Energy
S0

S1

vibronic levels
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wavelength than the exciting absorbance?

(Stokes shift)



Electronic Energy Levels
Use ethylene (ethene) as a simple model

CH2=CH2

π

π*

S1

(singlet) (singlet)

(ground) (excited)

S0

Double bond Single bond

Bond length

Energy

S0

S1

S0

S1
Vibronic levels

Vibronic levels

Why is fluorescence emission always at longer 
wavelength than the exciting absorbance?

(Stokes shift)



log ∆G ∆G nb/na

2 100 5.7964E-74

1 10 4.7459E-08

0 1 1.852E-01

-1 0.1 8.4482E-01

-2 0.01 9.8328E-01

-3 0.001 9.9832E-01

-4 0.0001 9.9983E-01

-5 0.00001 9.9998E-01
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there are generally many 
mechanisms for internal 

conversion - the environment 
is complex!
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What goes up, must come down
# molecs excited # excited states decayed

Fluorescence 
quantum yield:

# photons emitted( )
# photons absorbed( ) =

kF S1[ ]
kF + kic + kq Q[ ] + kis{ } S1[ ]

# photons emitted( )
# photons absorbed( ) =

kF S1[ ]
kF + kic + kq Q[ ] + kis{ } S1[ ]

# photons emitted( )
# photons absorbed( ) =

kF S1[ ]
kF + kic + kq Q[ ] + kis{ } S1[ ]

kabs S0[ ] = kF + kic + kq Q[ ] + kis{ } S1[ ]kabs S0[ ] = kF + kic + kq Q[ ] + kis{ } S1[ ]
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note that we don’t use or 
need to know kabs, [S0], or [S1]

# photons emitted( )
# photons absorbed( ) =

kF S1[ ]
kF + kic + kq Q[ ] + kis{ } S1[ ]

# photons emitted( )
# photons absorbed( ) =

kF S1[ ]
kF + kic + kq Q[ ] + kis{ } S1[ ]

# photons emitted( )
# photons absorbed( ) =

kF S1[ ]
kF + kic + kq Q[ ] + kis{ } S1[ ]
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The T1 state is 
long-lived — why?
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What goes up, must come down
# molecs excited # excited states decayed
kabs S0[ ] = kF + kic + kq Q[ ] + kis{ } S1[ ]
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Fluorescence 
quantum yield:

# photons emitted( )
# photons absorbed( ) =

kF S1[ ]
kF + kic + kq Q[ ] + kis{ } S1[ ]
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Fluorescence Quenching

kic Interactions with solvent/neighbor (environment, more broadly)
Dissipation through internal vibrational modes
increases with increasing temperature (usually)

practical alert: fluorescence can depend on temperature!!
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Fluorescence Quenching

kq

Collisional deactivation S* +Q⎯→⎯ S +Qvib/kin

S* +Q⎯→⎯ S+ +Q−

S* +Q⎯→⎯ S− +Q+
Electron transfer

Resonance energy transfer S* +Q⎯→⎯ S +Q*

I- O2
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Fluorescence Quenching

Collisional deactivation S* +Q⎯→⎯ S +Qvib/kin
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Fluorescence Quenching

Collisional deactivation S* +Q⎯→⎯ S +Qvib/kin
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Collisional (dynamic) assumes that 
interaction between fluorophore and 
quencher is purely “collisional” - two 
non-interacting billiard balls

S* +Q⎯→⎯ S +Qvib/kin

dynamic
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Increasing collision freq

F0
F

A hν⎯ →⎯ A* k Q[ ]⎯ →⎯⎯ A+Q  + heat collisional - “billiard balls”
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Collisional (dynamic) assumes that 
interaction between fluorophore and 
quencher is purely “collisional” - two 
non-interacting billiard balls

S* +Q⎯→⎯ S +Qvib/kin

dynamic

A+Q K⎯ →⎯← ⎯⎯ AQ hν⎯ →⎯ A*Q⎯→⎯ AQ  + heat static

A hν⎯ →⎯ A* k Q[ ]⎯ →⎯⎯ A+Q  + heat
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Collisional (dynamic) assumes that 
interaction between fluorophore and 
quencher is purely “collisional” - two 
non-interacting billiard balls

Increasing collision freq

Increasing [complex]

Dynamic

Dynamic + Static

Binding (static) assumes that the 
quencher binds the fluorophore in its 
ground state and that the bound state 
has different relaxation properties.

S* +Q⎯→⎯ S +Qvib/kin

dynamic static
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Collisional (dynamic) assumes that 
interaction between fluorophore and 
quencher is purely “collisional” - two 
non-interacting billiard balls

Increasing collision freq

Increasing [complex]

Dynamic

Binding (static) assumes that the 
quencher binds the fluorophore in its 
ground state and that the bound state 
has different relaxation properties.

S* +Q⎯→⎯ S +Qvib/kin

or 
Static

KSV usually increases with temperature

KD usually decreases with temperature
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Fluorescence 
Quantum Yield
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Fluorescence 
Lifetime

ΦF = # photons emitted
# photons absorbed

= kF
kF + kic + kq Q[ ]+ kis

= τ 0kF

τ F = 1
kF

(S1 lifetime)
(fluorescence decay)

τ 0 =
kF

kF + kic + kq Q[ ]+ kis
1



Fluorescence Lifetimes

Fluorescence 
Lifetime

Fluorophore Lifetime (ns) Excitation Max 
[nm]

Emission Max 
[nm]

Solvent

ATTO 655 3.6 655 690 Water

Acridine Orange 2.0 500 530 PB pH 7.8

Alexa Fluor 488 4.1 494 519 PB pH 7.4

Alexa Fluor 647 1.0 651 672 Water

BODIPY FL 5.7 502 510 Methanol

Coumarin 6 2.5 460 505 Ethanol

CY3B 2.8 558 572 PBS

CY3 0.3 548 562 PBS

CY5 1.0 646 664 PBS

Fluorescein 4.0 495 517 PB pH 7.5

Oregon Green 488 4.1 493 520 PB pH 9

Ru(bpy)2(dcpby)[PF6]2 375 458 650 Water

Pyrene > 100 341 376 Water

Indocyanine Green 0.52 780 820 Water

Rhodamine B 1.68 562 583 PB 7.8

τ 0 =
kF

kF + kic + kq Q[ ]+ kis



Electronic Energy Levels
En

er
gy

S0

S1

Vibronic 
levels

Vibronic 
levels

T1

A
bs

or
pt

io
n

Fl
uo

re
sc

en
ce

Ph
os

ph
or

es
ce

nc
e

In
te

rn
al

 c
on

ve
rs

io
n

In
te

rn
al

 c
on

ve
rs

io
n

Intersystem 
crossing

qu
en

ch
in

g Q

Q*

kF kic

kq[Q]

kis

kickph

What if multiple fluorophores with 
different lifetime parameters?

Better
Time resolved fluorescence

Excite a population, then turn off hv

S1[ ]t = S1[ ]t=0 e
−ktot t

F = kF S1[ ]t = kF S1[ ]t=0 e
−ktot t = F0e

−ktot t

F
F0

= e−ktot t

Exponential decay
If ktot is a mix of population, decay 
will be multiexponential

τ 0
τ

= 1+τ 0k0 Q[ ]= 1+KSV Q[ ]



Phase Modulated Time Resolved Fluorescence

Modulate intensity of excitation light
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Phase Modulated Time Resolved Fluorescence

Modulate intensity of excitation light

Iexcit

Ifluor

f



Phase Modulated Time Resolved Fluorescence

Modulate intensity of excitation light

Iexcit

Ifluor f F = 1

f F < 1
f tanf =wt pw =  freq of modulation of Iexcit

a

b B

A

0

m =
fractional modulation of emission
fractional modulation of excitation

=
B

A( )
b

a( )
m =

1
1+w2tm2

For simple system:

t = t p = tm



Electronic Energy Levels

Light emitted in fluorescence is 
subject to (almost) the same rules 

as that absorbed initially

Same polarization rules
(but any propagation direction)
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Electronic Energy Levels

Light emitted in fluorescence is 
subject to (almost) the same rules 

as that absorbed initially

Same polarization rules
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Fluorescence Resonance Energy Transfer
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Fluorescence Resonance Energy Transfer
A particular type of quenching

R

Donor
Acceptor

D0

D1

A0

A1

no photon involved
induced dipole-dipole interaction

oscillating 
transition dipole

oscillating 
transition dipole



Fluorescence Resonance Energy Transfer
A particular type of quenching

R

Donor

Acceptor

D0

D1

A0

A1

includes angular dependencies

= 2/3 for very rapid relative tumbling

θ

If fast rotation, angular dependence averages out



Fluorescence Resonance Energy Transfer
A particular type of quenching

R
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Rate∝ κ 2
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(new coloring…)



Fluorescence Resonance Energy Transfer
A particular type of quenching

R
Acceptor

Rate∝ κ 2

R6

Donor

D0

D1

A0

A1

Overlap integral

Dependencies:

favorable angle

energy match

“short” distance

Important: there are no 
photons involved here!!!

transition 
dipole transition 

dipole



Fluorescence Resonance Energy Transfer
A particular type of quenching

R

Donor

Acceptor

D0

D1

A0

A1

includes angular dependencies

= 2/3 for very rapid relative tumbling

FRET 
efficiency

lifetime of the donor in the 
absence of fluor energy transfer
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Fluorescence Resonance Energy Transfer
A particular type of quenching

R
Acceptor

Donor

D0

D1

A0

A1

Overlap integral

Angular Dependence 
(0-4; 2/3 for full averaging)

Quantum yield of donor 
(related to D1 lifetime)

Refractive index of 
intervening medium 

(polarizability)

Å
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Fluorescence Resonance Energy Transfer
A particular type of quenching

R
Acceptor

Donor

D0

D1

A0

A1

Å

Angular 
Dependence 

(0-4; 2/3 for full 
averaging) Refractive index of 

intervening medium 
(polarizability)

Overlap 
integral

Quantum yield 
of donor 

(related to 
lifetime)

Measuring absolute distances?
- difficult
- burden: knowing R0

Measuring changes in distances?
- excellent, particularly if 

accuracy not important



Development of a genetically encodable FRET system using fluorescent RNA aptamers
Mette D. E. Jepsen, … & Ebbe S. Andersen, Nature Communications 9, 18 (2018)  doi:10.1038/s41467-017-02435-x

FRET angle probe

Mango

Spinach



Development of a genetically encodable FRET system using fluorescent RNA aptamers
Mette D. E. Jepsen, … & Ebbe S. Andersen, Nature Communications 9, 18 (2018)  doi:10.1038/s41467-017-02435-x

FRET angle probe

Mango

Spinach

Spinach stem 16 bp

Spinach stem 17 bp



Dipole moment calculation
The dipole moment of DFHBI-1T was 
calculated using the Marvin software suite 
(version 15.10.19) and the Calculator Plugin 
developed by ChemAxon (http://
www.chemaxon.com/). The chemical structure 
of DFHBI-1T was drawn in MarvinSketch, and 
the protonation state of the molecule was 
determined at pH 7.8 by using the pKa 
Calculator Plugin. The dipole moment of the 
most abundant DFHBI-1T microspecies (70.4% 
at pH 7.8) was calculated by using the Dipole 
Moment Calculator Plugin. The total dipole 
moment of DFHBI-1T was visualized as a 
vector expressed in the principal axis frame.

A little knowledge…

What’s wrong with this?

http://www.chemaxon.com/
http://www.chemaxon.com/


Checking in with Wikipedia
“FRET is analogous to near-field communication, in that 

the radius of interaction is much smaller than the 
wavelength of light emitted. In the near-field region, the 

excited chromophore emits a virtual photon that is 
instantly absorbed by a receiving chromophore….”

“…These virtual photons are undetectable, since their 
existence violates the conservation of energy and momentum, 

and hence FRET is known as a radiationless mechanism”

Virtual photon  ≠   photon

In physics, a virtual particle is a transient quantum fluctuation that exhibits some of the 
characteristics of an ordinary particle, while having its existence limited by the uncertainty principle

https://en.wikipedia.org/wiki/Near_and_far_field
https://en.wikipedia.org/wiki/Light
https://en.wikipedia.org/wiki/Virtual_photon
https://en.wikipedia.org/wiki/Physics
https://en.wikipedia.org/wiki/Quantum_fluctuation
https://en.wikipedia.org/wiki/Uncertainty_principle


Determining Fluorescence Quantum Yield

D0

D1

Determine relative to a known 
reference (R) standard

Φ =
I
A

IR
AR

n2

nR
2 ΦR

Φ proportional to I/A 

photons emitted
photons absorbed

FRET 
efficiency



D0

D1

I = Integrated Fluor Emmission Intensity
A =  Absorbance at Abs Max
n =  refractive index of medium

A
I

Determine relative to a known 
reference (R) standard

For a slightly more complex, but more 
accurate approach, see this link

Determining Fluorescence Quantum Yield

https://www.perkinelmer.com/lab-solutions/resources/docs/APP_Determination_of_Relative_FluorescenceQuantum_Yields_using_FL6500_Fluorescence_Spect.pdf


Fluorescence Resonance Energy Transfer
A particular type of quenching

R
Acceptor

Donor

D0

D1

A0

A1

Measuring absolute distances?
- difficult
- burden: knowing R0

Measuring changes in distances?
- better, particularly if accuracy 

not important

In the measured system



Fluorescence Resonance Energy Transfer
A particular type of quenching

R
Acceptor

Donor

D0

D1

A0

A1

Å

Angular 
Dependence 

(0-4; 2/3 for full 
averaging) Refractive index of 

intervening medium 
(polarizability)

Overlap 
integral

Quantum yield 
of donor 

(related to 
lifetime)

Measuring absolute distances?
- difficult
- burden: knowing R0

Measuring changes in distances?
- better, particularly if accuracy 

not important
BUT…



Determining FRET Efficiency

D0

D1

A0

A1

Measure quantum yield of donor

Use a separate control OR  
Photobleach acceptor

kFkic kET
A

I



Determining FRET Efficiency

D0

D1

A0

A1
kFkic

kis

A
I

Measure quantum yield of donor



Determining FRET Efficiency

D0

D1

A0

A1

λ (nm)

Donor
Absorption

Donor
Emission

λ (nm)

Acceptor
Absorption

Acceptor
Emission

λ (nm)

Donor
Absorption

Donor
Emission

Acceptor
Absorption

Acceptor
Emission

Measure quantum yield of donor



Determining Distances / Distance Changes
Caveats

• Angular dependence (κ2) 

• Environment dependence (J, ϕD) 

• Distance is a (complicated) average 

• Probe is large, linkages can be long 

• Construct complications 

- Free fluorophores 

- Donors without partner acceptors 

- Acceptors without partner donors



Determining Distances / Distance Changes
Common probes and Caveats

• Common probes 

- GFP/ YFP, etc

View from Proteopedia

N
N
H

H
N

OH
N

N
HH2N

HO

O

O

O
O

OH

H2N

O

Genetically fuse onto 
other proteins. 

Provides an in vivo 
fluorescent tag

Fluorophore chemically 
“matures” from amino 

acid precursors

Read more...

http://www.proteopedia.org/wiki/index.php/Green_Fluorescent_Protein
http://www.cryst.bbk.ac.uk/PPS2/projects/jonda/chromoph.htm


Determining Distances / Distance Changes
Common probes and Caveats

View from Proteopedia Nature methods | VOL.9 NO.10 | OCTOBER 2012 | 1005 

http://www.proteopedia.org/wiki/index.php/Green_Fluorescent_Protein


Determining Distances / Distance Changes
Common probes

• Common probes 

- GFP/ YFP, etc 

- Rhodamine family 

- Fluorescein family

Rhodamine 6G

OHN NH+

O
O

OHO O

OH
O

Fluorescein

Fluorescein 
isothiocyanate

(FITC)

OHO O

OH
O

N
C

S

Other derivatives:  
Oregon Green, Tokyo Green

Rhodamine

OH2N NH2+

O
O

Other derivatives:  
Texas Red, TRITC

ON N

O

O

Tetramethyl Rhodamine
(TAMRA)



Determining Distances / Distance Changes

• Common probes 

- GFP/ YFP, etc 

- Rhodamine family 

- Fluorescein family 

- Alexa family

less pH-sensitive & more photostable 
than fluorescein, rhodamine, etc

Molecular Probes, Inc. 
(Invitrogen)

OH2N NH2+

O-

O

SO3
- SO3

-

HN

O

Alexa Fluor 488

O

O-

O

HN

O

N N+

SO3
-HO3S

Alexa Fluor 594

Common probes

http://www.invitrogen.com/site/us/en/home/References/Molecular-Probes-The-Handbook/Fluorophores-and-Their-Amine-Reactive-Derivatives/Alexa-Fluor-Dyes-Spanning-the-Visible-and-Infrared-Spectrum.html


Determining Distances / Distance Changes

• Common probes 

- GFP/ YFP, etc 

- Rhodamine family 

- Fluorescein family 

- Alexa family 

- Cy3, Cy5 family

Common probes



Determining Distances / Distance Changes

• Common probes 

- GFP/ YFP, etc 

- Rhodamine family 

- Fluorescein family 

- Alexa family 

- Cy3, Cy5 family

less pH-sensitive & more photostable 
than fluorescein, rhodamine, etc

Molecular Probes, Inc. 
(Invitrogen)

Common probes

http://www.invitrogen.com/site/us/en/home/References/Molecular-Probes-The-Handbook/Fluorophores-and-Their-Amine-Reactive-Derivatives/Alexa-Fluor-Dyes-Spanning-the-Visible-and-Infrared-Spectrum.html


Determining Distances / Distance Changes

• Common probes 

- GFP/ YFP, etc 

- Spinach, Broccoli 

- Rhodamine family 

- Fluorescein family 

- Alexa family 

- Cy3, Cy5 family Which is donor?

Exc = 550 nm

Em = 570 nm

Exc = 649 nm

Em = 670 nm

More in family: Cy3.5, Cy5.5, et al.

Common probes



Determining Distances / Distance Changes

Which is donor?

Exc = 550 nm

Em = 570 nm

Exc = 649 nm

Em = 670 nm

Common probes



Determining Distances / Distance Changes



Determining Distances / Distance Changes



Molecular Beacons
a simple application of FRET quenching

Donor Acceptor
(non-fluorescent)

(aka “Quencher”)

Quenched

Unquenched

http://www.molecular-beacons.org/Introduction.html


Molecular Beacons
a simple application of FRET quenching

Quenched

Unquenched

Huge number of applications:
• Gene probing
• Real Time PCR
• Molecular switch sensors

Advantages
• Fluorescence - very sensitive!

• low background
• always better to detect signal ON

• Inexpensive

http://www.molecular-beacons.org/Introduction.html


Molecular Beacons
a simple application of FRET quenching

• Gene probe diagnostics (multiplexing)

http://www.molecular-beacons.org/Introduction.html


Molecular Beacons
a simple application of FRET quenching

• Gene probe diagnostics (multiplexing)

http://www.molecular-beacons.org/Introduction.html


Recap - Transition Dipole Moment
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Transition Dipole Moment

µ ^ µ ^ y
�h

+h

xx2 1

Integrals the easy way

µ ^ µ ^ y
�h

+h

xx2 1

even odd

ZeroNon-zero
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Formaldehyde: π to π*
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µ

µ
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dx dy dz
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Fluorescence Anisotropy
(fluorescence polarization)

 
A =

IP − I⊥
IP + 2I⊥

excitation

emission

emission

 IP > 0
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Fluorescence Anisotropy
(fluorescence polarization)

 
A =

IP − I⊥
IP + 2I⊥

excitation

emission

emission

 IP > 0

I⊥ > 0

rigid
2
5
> A > 0

photoselection

For both absorption and 
emission have to integrate cos2 

and sin2 functions over all angles
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Fluorescence Anisotropy
(fluorescence polarization)

 
A =

IP − I⊥
IP + 2I⊥

excitation

emission

emission

 IP > 0

I⊥ > 0

fluid

emission

emission

 IP > 0 A ≈ 0

Full random reorientation,  A=0



Fluorescence Anisotropy
(fluorescence polarization)

2
5
> A > 0

For both absorption and 
emission have to integrate cos2 

and sin2 functions over all angles

 
A =

IP − I⊥
IP + 2I⊥

But wait…
This all assumes that the absorption 
and emission transition dipole 
moments are parallel (in an ideal 
world, they are, but we don’t live in 
an ideal world)

The details can be more 
complicated, but the basic story 
remains the same
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Fluorescence Anisotropy, Single Molecule, TIRF
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Rotate monochrometers to 
choose wavelength (center)
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But excitation is MUCH 
brighter than emission!
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Fluorescence

monochromatic, all orientations

monochromatic, single orientation

excitation 
polarizing filter

parallel perpendicular

I⊥ IP

Excitation

Emission

slit

slit
monochrometer

Larger slit
• more light!
• more wavelengths

500 550 600 650 700

wavelength (nm)
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Emission
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bandpass

Emission 
bandpass

bandpass

But excitation is MUCH 
brighter than emission!

Questions?



Fluorescence Anisotropy
(fluorescence polarization)

 
A =

IP − I⊥
IP + 2I⊥

excitation

emission

emission

 IP > 0

I⊥ > 0

fluid

emission

emission

 IP > 0

Full random reorientation,  A=0



Fluorescence Anisotropy
(fluorescence polarization)

 
A =

IP − I⊥
IP + 2I⊥
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all orientations

monochromatic, all orientations

monochromatic, single orientation

excitation 
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parallel perpendicular

I⊥ IP
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Aparallel



Fluorescence Anisotropy
(fluorescence polarization)

 
A =

IP − I⊥
IP + 2I⊥

light

all freqs
all orientations

monochromatic, all orientations

monochromatic, single orientation

excitation 
polarizing filter

parallel perpendicular

I⊥ IP

Perpendicular

Aperpendicular



Fluorescence Anisotropy
(experimental setup)

 
A =

IP − I⊥
IP + 2I⊥

L-format

light
all freqs

all orientations

monochromatic, all orientations

monochromatic, single orientation
excitation 

polarizing filter

emission 
polarizing filter

alternate: 
parallel vs perpendicular

 IP vs I⊥



Fluorescence Anisotropy
(fluorescence polarization)

 
A =

IP − I⊥
IP + 2I⊥

light

all freqs
all orientations

monochromatic, all orientations

monochromatic, single orientation

excitation 
polarizing filter

parallel perpendicular

I⊥ IP
T-format



Fluorescence Anisotropy
(fluorescence polarization)

 
A =

IP − I⊥
IP + 2I⊥

Randomization/rotation - how fast is 
fast enough?

Time scale is relative to how long the 
molecules stays excited before 
emitting - their fluorescence lifetimes.

Typically 1-100 nsec

Small protein - reasonable rotation

Large protein - little rotation

Fluorophore connected via -CH2CH2- 
linkage - reasonable rotation

light
all freqs

all orientations

monochromatic, all orientations

monochromatic, single orientation
excitation 

polarizing filter

parallel perpendicular

I⊥ IP



Fluorescence Anisotropy
caveats and uses

 
A =

IP − I⊥
IP + 2I⊥

light
all freqs

all orientations

monochromatic, all orientations

monochromatic, single orientation
excitation 

polarizing filter

parallel perpendicular

I⊥ IP

Factors effecting anisotropy
• local vs global motions

• FRET - scrambles polarization

• why?

• light scattering

• misalignment of polarizers

• problem for absolute measurements

• temperature dependence

• wavelength dependence

• T-format better, but more $$

• better sensitivity (2X)

• time dependent measurements



Fluorescence Anisotropy
caveats and uses

• Measure binding! 

• sometimes 

• Measure conformational change 

• sometimes 

• A spherical proteins – r0/r = 1 + τ/θ = 1 + 6Dτ, where 
D is the diffusion coefficient 

• Rotational correlation time θ = ηV/RT 

• For a single exponential intensity decay 

• r=r0/(1+ τ/θ ) 

• Can calculate anisotropy of labeled proteins in 
solution 

• with caveats 

• θ = ηV/RT = θ = [ηM/RT](v+h)

Insights gained

 
A =

IP − I⊥
IP + 2I⊥

light
all freqs

all orientations

monochromatic, all orientations

monochromatic, single orientation
excitation 

polarizing filter

parallel perpendicular

I⊥ IP



Single Molecule Fluorescence
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Single Molecule Fluorescence



Single Molecule Fluorescence

single photon avalanche detector

Compare signals



Single Molecule Fluorescence

Why a microscope?
narrow x-y area
TIRF allows thin layer (z)
small observation volume ≤ fL (10-15 L)



Single Molecule Fluorescence
Wide field microscope - Dual color

Image a cell



Single Molecule Fluorescence
Wide field microscope - Dual color

Measure millions of 
“dots” simultaneously 

Massively parallel data collection
(lifetimes, anisotropy, FRETm etc)AOTF = acousto-optical tunable filter 



Single Molecule Fluorescence
Confocal Microscope - decreases background signal

avalanche photo-detectors

From a single molecule,
can observe 100,000-200,000 

photons per second

Desirable: quantum 
yields of 0.8-0.9



Single Molecule Fluorescence
Challenges in solution

Diffusion:
Transit time ≈50 µs

200-300 nm

100,000-200,000 photons per second
5-10 photons / transit !

Transit time ≈5 ms

5,000-10,000 photons / transit !



Towards Single Molecule Fluorescence

Why a microscope?
narrow x-y area
TIRF allows thin layer (z)
small observation volume ≤ fL (10-15 L)

How can we limit 
fluorescence only from things 

very close to the surface?

quartz
water



slower 
medium

faster 
medium

Media with different refractive indices

Quartz

Refraction of Light

What common technology these days uses this?

>60 miles!

glass w different 
refractive index



slower 
medium

faster 
medium

Media with different refractive indices

Quartz

water

Refraction of Light

speed of light in a vacuum

phase velocity of light 
in the medium

index of 
refraction

For a detailed explanation of phase 
velocity and refractive index, see 

Wikipedia

https://en.wikipedia.org/wiki/Refractive_index#Microscopic_explanation


Total Internal Reflectance

slower 
medium

faster 
medium

critical 
angle

TIR

Media with different refractive indices

glass 
(quartz)

water

glass 
(quartz)

water



Total Internal Reflectance
Molecular Cell 24, 317–329, November 3, 2006

Single-Molecule Biology:
What Is It and How Does It Work?

Jordanka Zlatanova1, and 
Kensal van Holde

In TIR, the excitation light is directed toward an interface between two media of different refractive indices (i.e., from an optically 
denser medium, such as a glass slide, into a less-dense medium, such as water) (Axelrod, 2001). The incident angle of the beam is set 
larger than a certain critical angle, defined by the properties of the two media; all the light is reflected off the glass and does not 
penetrate into the solution (Figure 1A). How-ever, an electromagnetic field that oscillates with the same frequency as the incident 
light does form in the less-dense medium (the water on the other side). Because this electromagnetic field (also called evanescent 
field or wave) decays exponentially from the glass surface, it is capable of exciting fluorophores only in a very small volume close to 
the surface, thus effectively preventing out-of-focus fluorescence background. The excitation light itself is cleanly removed from the 
observation chamber, reducing the background even further.

Quartz

water

oscillating field

se
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l 

w
av
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en
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hs

hv



biotinylated 
L4 subunit

GFP

PEG
Glass cover slip

Single Molecule Fluorescence
Molecular Cell 24, 317–329, November 3, 2006



Single Molecule Fluorescence
Molecular Cell 24, 317–329, November 3, 2006



Single Molecule Fluorescence
Molecular Cell 24, 317–329, November 3, 2006

Jeff Gelles, et al.



Single Molecule Fluorescence



Refraction of Light

slower 
medium

faster 
medium

Media with different refractive indices

Bead

water



Refraction of Light

slower 
medium

faster 
medium

Media with different refractive indices

Bead

water

Bead
w/ higher 

refractive index

water



Refraction of Light

slower 
medium

faster 
medium

Media with different refractive indices

Bead

water

Bead

Light has momentum
conservation of momentum

w/ higher 
refractive index

water

∆p
∆p



Laser (Bead) Trap
Media with different refractive indices

Adapted from https://blocklab.stanford.edu/optical_tweezers.html



Laser (Bead) Trap
Media with different refractive indices

Adapted from https://blocklab.stanford.edu/optical_tweezers.html



Laser (Bead) Trap
Media with different refractive indices

Adapted from https://blocklab.stanford.edu/optical_tweezers.html

force pushes bead to center of trap



Laser (Bead) Trap
Media with different refractive indices

Adapted from https://blocklab.stanford.edu/optical_tweezers.html

force pushes bead to center of trap

no net lateral force at center
but there is a net axial force



Laser (Bead) Trap
Traps both laterally and axially

https://en.wikipedia.org/wiki/Optical_tweezers

laser light inlaser light in

1 21 2

F12

net

F

F
F1 2

net

F

F

Adapted from Roland Koebler, CC BY 3.0, 
https://commons.wikimedia.org/w/index.php?curid=15083883



Single Molecule Fluorescence
Molecular Cell 24, 317–329, November 3, 2006

Ashkin, A., Dziedzic, J., Bjorkholm, J. & 
Chu, S. (1986) Observation of a single-

beam gradient force optical trap for 
dielectric particles. Opt. Lett. 11, 288–290

Nobel Prize in Physics 1997

Steven Chu
Prof of Physics and of Mol & Cell Bio

Stanford

U.S. Secretary of Energy
2009 - 2013

The location (focus) of the 
trap can be moved by 

adjusting the focusing of 
the lenses



Single Molecule Fluorescence
Molecular Cell 24, 317–329, November 3, 2006

The location (focus) of the 
trap can be moved by 

adjusting the focusing of 
the lenses

The strength of 
the trap can also 

be adjusted.



Single Molecule Fluorescence
Molecular Cell 24, 317–329, November 3, 2006



Single Molecule Fluorescence
Molecular Cell 24, 317–329, November 3, 2006

The force of the trap is varied, 
automatically under computer control, 

to maintain the bead in the trap.



Single Molecule Fluorescence

(D) Stretching of a chromatin fiber assembled on naked l-DNA molecule by the 
addition of X. laevis egg extract directly into the flow cell of the instrument. The 
extract contains core histones and protein factors needed for assembly (assembly is 
manifested by shortening of the distance between the two beads with time). Note the 
sharp discontinuities in the force-extension curve reflecting the unraveling of the DNA 
from around the histone octamer that forms the core of the nucleosomal particles. 
Nucleosomes can unwrap either individually or in groups of two, three, or four. At high 
extension, when all histones have been forced off, the curve approaches that of naked 
DNA. Note that the two force-extension curves for DNA (C) and chromatin (D) are 
aligned with respect to the length of the structure during stretching, so that a direct 
comparison of the behavior of DNA and of chromatin is possible.

Molecular Cell 24, 317–329, November 3, 2006



Single Molecule Fluorescence
Molecular Cell 24, 317–329, November 3, 2006

Can flow things in and out…



Single Molecule Fluorescence
Molecular Cell 24, 317–329, November 3, 2006

Steve Block, et al.



Atomic Force Spectroscopy
Molecular Cell 24, 317–329, November 3, 2006



Atomic Force Spectroscopy
Molecular Cell 24, 317–329, November 3, 2006



Media with different refractive indices
Refraction of Light

speed of light in a vacuum

phase velocity of light in 
the medium

index of 
refraction

Vacuum
Light slows in a medium other 
than vacuum.
This is not scattering or 
absorption.
The oscillating electric vector of 
light causes electrons in atoms to 
oscillate. 
They, in turn, generate their own 
electromagnetic wave (think of a 
radio antenna) at the same 
frequency, leading to constructive 
interference. 
The resulting "combined" wave 
has wave packets that pass an 
observer at a slower rate. The 
light has effectively been slowed.

Electric field is oscillates at the 
same frequency on each side

Propagation rate has changed



slower 
medium

faster 
medium

Media with different refractive indices

Quartz

water

Refraction of Light

speed of light in a vacuum

phase velocity of light in 
the medium

index of 
refraction

Vacuum

slowed 
longer

slowed 
less

By Ulflund - https://commons.wikimedia.org/w/index.php?curid=73784342

The amount of bending depends on:
• Change in speed (nν/n)
• Angle of the incident ray

Uniform 
behavior



Scattering
Rayleigh scattering: the oscillating electric field of a light wave acts on the charges (electrons) 
within a particle (atom/molecule), causing the charges to move at the same frequency (the 
particle is polarizable). The particle, therefore, becomes a small radiating dipole whose 
radiation we see as scattered light. 



Scattering

EM of the incident light induces an oscillation in the electron cloud, with the same frequency as the incident light

The oscillating electron cloud (dipole) then generates EM (of the same frequency)

In Raleigh scattering, the particles are much 
smaller than the wavelength of the light.



Scattering

θ
r

DetectorReference 
Detector

laser
sample

EM of the incident light induces an oscillation in the electron cloud, with the same frequency as the incident light

The oscillating electron cloud (dipole) then generates EM (of the same frequency)



Scattering

NA = 6.022 · 1023 mol−1 λ = wavelength of laser lightC = weight concentration of solute (g/mL)

θ
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DetectorReference 
Detector

laser
sample

refractive index of the solvent in the absence of solute

change in refractive index of the solvent vs weight concentration of solute
= 0.185 mL/g for proteins (in water) 

molar mass (molecular weight) of solute (g/mol)



Scattering

NA = 6.022 · 1023 mol−1 λ = wavelength of laser lightC = weight concentration of solute (g/mL)
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refractive index of the solvent in the absence of solute

change in refractive index of the solvent vs weight concentration of solute
= 0.185 mL/g for proteins (in water) 

molar mass (molecular weight) of solute (g/mol)

scattering “volume” seen by the detector at angle θ and distance r



Scattering

refractive index of the solvent in the absence of solute

change in refractive index of the solvent vs weight concentration of solute
= 0.185 mL/g for proteins (in water) 

NA = 6.022 · 1023 mol−1 

molar mass (molecular weight) of solute (g/mol)

λ = wavelength of laser lightC = weight concentration of solute (g/mL)

scattering “volume” seen by the detector at angle θ and distance r

correction factor that considers the SHAPE of the solute
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Scattering

NA = 6.022 · 1023 mol−1 λ = wavelength of laser lightC = weight concentration of solute (g/mL)

refractive index of the solvent in the absence of solute

change in refractive index of the solvent vs weight concentration of solute
= 0.185 mL/g for proteins (in water) 

molar mass (molecular weight) of solute (g/mol)
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correction factor that considers the SHAPE of the solute
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Scattering

NA = 6.022 · 1023 mol−1 λ = wavelength of laser lightC = weight concentration of solute (g/mL)

refractive index of the solvent in the absence of solute

change in refractive index of the solvent vs weight concentration of solute
= 0.185 mL/g for proteins (in water) 

molar mass (molecular weight) of solute (g/mol)

correction factor that considers the SHAPE of the solute
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Scattering

NA = 6.022 · 1023 mol−1 λ = wavelength of laser lightC = weight concentration of solute (g/mL)

refractive index of the solvent in the absence of solute

change in refractive index of the solvent vs weight concentration of solute
= 0.185 mL/g for proteins (in water) 

molar mass (molecular weight) of solute (g/mol)

correction factor that considers the SHAPE of the solute
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Scattering

NA = 6.022 · 1023 mol−1 λ = wavelength of laser lightC = weight concentration of solute (g/mL)

refractive index of the solvent in the absence of solute

change in refractive index of the solvent vs weight concentration of solute
= 0.185 mL/g for proteins (in water) 

molar mass (molecular weight) of solute (g/mol)

correction factor that considers the SHAPE of the solute
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Scattering

θ
r

DetectorReference 
Detector

laser
sample

NA = 6.022 · 1023 mol−1 λ = wavelength of laser lightC = weight concentration of solute (g/mL)

refractive index of the solvent in the absence of solute

change in refractive index of the solvent vs weight concentration of solute
= 0.185 mL/g for proteins (in water) 

A2 (second virial coefficient) is a measure of non-ideality - a measure of the 
interaction forces between dissolved particles:  If A2 is positive, the 
interparticle forces are repulsive. If it is negative the forces are attractive.

molar mass (molecular weight) of solute (g/mol)

correction factor that considers the SHAPE of the solute



Revisit T-format Anisotropy Measurement

 
A =

IP − I⊥
IP + 2I⊥

light

all freqs
all orientations

monochromatic, all orientations

monochromatic, single orientation

excitation 
polarizing filter

parallel perpendicular

I⊥ IP



Confocal Fluorescence Microscopy Anisotropy

 
A =

IP − I⊥
IP + 2I⊥

light
all freqs

all orientations

monochromatic, all orientations

monochromatic, single orientation
excitation 

polarizing filter

parallel perpendicular

I⊥ IP

Polarized
Monochromatic

Similarly, fluorescence lifetime 
imaging (FLIM) FRET

why might these have advantages over 
simple fluorescence or direct FRET?



Scattering



Scattering

θ
r

DetectorReference 
Detector

laser
sample



Diffusion (Brownian Motion)

D = kBT
6πηr

η = solution viscosity

r = hydrodynamic radius

+ +
+

++
+

“apparent size”

H2O

H
2O

H2O
H

2O

H
2O

H2O
H2O

H2O H2O

H2O
H2O

H
2O



Raleigh Scattering

Fluorescence 
emission

Raleigh light scattering

10 nm

400 nm

http://en.wikipedia.org/wiki/Raleigh_scattering


Fluorescence Spectroscopy

light
all freqs

Fluorescence 
emission

Raleigh light scattering



Scattering - TWO particle

10 nm

450 nm

Particle
Pair

Diffraction
Pattern

Thomas Young - Royal Society, 1803 

Constructive
& Destructive
Interference

you see a 
pattern of dark 
and light spots

http://en.wikipedia.org/wiki/Diffraction_pattern


Scattering - MANY particles

Thomas Young - Royal Society, 1803 
450 nm

Many pairwise groups of
constructive & destructive

interferences

Constructive
& Destructive
Interference

Scattering
but no
pattern

But no coherent additivity

10 nm

you see dark 
and light spots, 
but no pattern

you see a 
pattern of dark 
and light spots



Dynamic Light Scattering

Thomas Young - Royal Society, 1803 
450 nm

Constructive
& Destructive
Interference

10 nm

Pair of molecules yields
scattering at a specific angle and magnitude



Dynamic Light Scattering

Thomas Young - Royal Society, 1803 
450 nm

Constructive
& Destructive
Interference

10 nm

Different sizes - a new angle & magnitude

Pair of molecules yields
scattering at a specific angle and magnitude



Dynamic Light Scattering

Thomas Young - Royal Society, 1803 
450 nm

Constructive
& Destructive
Interference

10 nm
Photon Correlation Spectroscopy

Volume empty - no scattering



Dynamic Light Scattering

Thomas Young - Royal Society, 1803 
450 nm

Constructive
& Destructive
Interference

10 nm
Photon Correlation Spectroscopy

Volume empty - no scattering



Dynamic Light Scattering

Thomas Young - Royal Society, 1803 
450 nm

Constructive
& Destructive
Interference

10 nm
Photon Correlation Spectroscopy

Smaller molecule scattering - angle 1



Dynamic Light Scattering

Thomas Young - Royal Society, 1803 
450 nm

Constructive
& Destructive
Interference

10 nm
Photon Correlation Spectroscopy

Volume empty - no scattering



Dynamic Light Scattering

Thomas Young - Royal Society, 1803 
450 nm

Constructive
& Destructive
Interference

10 nm
Photon Correlation Spectroscopy

Larger molecule scattering - angle 2



Dynamic Light Scattering

Thomas Young - Royal Society, 1803 
450 nm

Constructive
& Destructive
Interference

10 nm
Photon Correlation Spectroscopy

Larger molecule scattering - angle 2



Dynamic Light Scattering

Thomas Young - Royal Society, 1803 
450 nm

Constructive
& Destructive
Interference

10 nm
Photon Correlation Spectroscopy

Volume empty - no scattering



Dynamic Light Scattering

Thomas Young - Royal Society, 1803 
450 nm

Constructive
& Destructive
Interference

10 nm
Photon Correlation Spectroscopy

Volume empty - no scattering

you see dark 
and light spots, 

no pattern. 
“blinking”



Dynamic Light Scattering

Thomas Young - Royal Society, 1803 
450 nm

Constructive
& Destructive
Interference

10 nm
Photon Correlation Spectroscopy

you see dark 
and light spots, 

no pattern. 
“blinking”



Dynamic Light Scattering
10 nm

Photon Correlation Spectroscopy
you see dark 

and light spots, 
no pattern. 
“blinking”



Dynamic Light Scattering
Photon Correlation Spectroscopy

450 nm

10 nm

g2 q, t( ) =
I t( ) ⋅ I t + t( )

I t( ) 2

f t( ) = time average of  f t( )

Autocorrelation 
function

Specific 
wave vector

time

τ

http://en.wikipedia.org/wiki/Dynamic_light_scattering


Dynamic Light Scattering
Photon Correlation Spectroscopy

450 nm

10 nm

g2 q, t( ) =
I t( ) ⋅ I t + t( )

I t( ) 2

f t( ) = time average of  f t( )

Autocorrelation 
function

Specific 
wave vector

time

Intensity of 
scattered light

small time 
interval

non-zero only 
when particles 

“stick around” in 
time τ

τ

http://en.wikipedia.org/wiki/Dynamic_light_scattering


Dynamic Light Scattering
Photon Correlation Spectroscopy

450 nm

10 nm

g2 q, t( ) =
I t( ) ⋅ I t + t( )

I t( ) 2

non-zero only when 
particles “stick around” 

in time τ

Relates to probability distribution function

P r, t | 0,0( ) = 4pDt( )−
3

2  e
− r2

4Dt

Assumes random (Brownian) motion

τ



Dynamic Light Scattering
Photon Correlation Spectroscopy

450 nm

10 nm

g2 q, t( ) =
I t( ) ⋅ I t + t( )

I t( ) 2

non-zero only when 
particles “stick around” 

in time τ

Diffusion relates to (hydrodynamic) size

Assumes spherical particles of radius R

Calibrate with particles of known size

τ

D = kBT
6πηr



Dynamic Light Scattering
Photon Correlation Spectroscopy

450 nm

10 nm

g2 q, t( ) =
I t( ) ⋅ I t + t( )

I t( ) 2

τ



Dynamic Light Scattering

450 nm

10 nm
Assumptions and Caveats

Assumes
• Brownian motion
★ non-interacting billiard balls

• Spherical scatterers
• Proper calibration for viscosity, etc
• Properly dilute solution
• No interference from other scatterers

D =
kBT

6πηr



Dynamic Light Scattering

450 nm

10 nm
Assumptions and Caveats

Assumes
• Brownian motion
★ non-interacting billiard balls

• Spherical scatterers
• Proper calibration for viscosity, etc
• Properly dilute solution
• No interference from other scatterers

D =
kBT

6πηr
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Dynamic Light Scattering

D =
kT
6phR



Read data from a file
>edat <- read.csv("DataGrp1.csv", header = TRUE)

To confirm a successful read:
>edat
    X  t         dat 
1   1  0 10.13859677 
2   2  1  8.35533476 
3   3  2  6.76788472 
4   4  3  5.36280912

>plot(edat$t, edat$dat)

Go to Moodle

Find out what group you are in

Download your group data file

Launch R

Read the data in

Plot the data



0 10 20 30 40

0
2

4
6

8
10

edat1$t

ed
at
1$
da
t

Read data from a file
>edat <- read.csv("DataGrp1.csv", header = TRUE)

To confirm a successful read:
>edat
    X  t         dat 
1   1  0 10.13859677 
2   2  1  8.35533476 
3   3  2  6.76788472 
4   4  3  5.36280912

>plot(edat$t, edat$dat)

What does 
this look like?

Exponential 
decay



Let’s make the plot prettier
>plot(edat$t, edat$dat, xlab=“Time (s)”, ylab=“Fluorescence”)
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Return to Breakout Group

Re-plot the data as above

Remember “up-arrow”

Watch out for “curly quotes”
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Log scale
>plot(edat$t, edat$dat, xlab=“Time (s)”, ylab=“Fluorescence”, log="y")

In the old days, 
they’d get out a ruler 

Why doesn’t 
Craig like this?
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Come up with a function
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Experiment (observations) Distortion of data

y = B + Ae-t/τ

Come up with a function

misrepresented 
error
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Come up with and define a function

y = Ae-t/τ

y = B + Ae-t/τ
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Come up with and define a function
>eDecay <- function(t, ampl, tau) (ampl*exp(-t/tau))

y = Ae-t/τ

define parametersfunc name func definition

>plot(t, eDecay(edat$t,10,5))



R - nonlinear regression (nls)
>eDecay <- function(t, ampl, tau) (ampl*exp(-t/tau))

y = Ae-t/τ

define parametersfunc name func definition

Return to Breakout Group

>model1 <- nls(edat$dat ~ eDecay(edat$t,ampl,tau), start=list(ampl=10,  tau=5), trace=TRUE)

function call initial guessesfluor data

Compare experimental data to theory
Results 
stored 
here

>summary(model1)



R - nonlinear regression (nls)

y = Ae-t/τ

>model1 <- nls(edat$dat ~ eDecay(edat$t,ampl,tau), start=list(ampl=10,  tau=5), trace=TRUE)

function call initial guessesfluor data

Formula: edat1$dat ~ eDecay(edat1$t, ampl, tau) 

Parameters: 
     Estimate Std. Error t value Pr(>|t|)     
ampl   9.5239     0.2294   41.52   <2e-16 *** 
tau    6.2702     0.2308   27.16   <2e-16 *** 

Formula: edat2$dat ~ eDecay(edat2$t, ampl, tau) 

Parameters: 
     Estimate Std. Error t value Pr(>|t|)     
ampl   9.3353     0.1727   54.05   <2e-16 *** 
tau    6.3280     0.1788   35.39   <2e-16 *** 

Formula: edat3$dat ~ eDecay(edat3$t, ampl, tau) 

Parameters: 
     Estimate Std. Error t value Pr(>|t|)     
ampl   9.3329     0.1938   48.16   <2e-16 *** 
tau    6.4709     0.2049   31.58   <2e-16 *** 

Formula: edat4$dat ~ eDecay(edat4$t, ampl, tau) 

Parameters: 
     Estimate Std. Error t value Pr(>|t|)     
ampl   9.1827     0.1936   47.44   <2e-16 *** 
tau    6.5311     0.2098   31.12   <2e-16 ***

9.5 ± 0.2 6.3 ± 0.2 s

6.3 ± 0.2 s

6.5 ± 0.2 s

6.5 ± 0.2 s

Rigor and
Reproducibility?



R - Plot data and the fit

y = Ae-t/τ

>model1 <- nls(edat$dat ~ eDecay(edat$t,ampl,tau), start=list(ampl=10,  tau=5), trace=TRUE)

function call initial guessesfluor data

9.5 ± 0.2 6.3 ± 0.2 s

9.3 ± 0.2 6.3 ± 0.2 s

9.3 ± 0.2 6.5 ± 0.2 s

9.2 ± 0.2 6.5 ± 0.2 s

>plot(edat$t, edat$dat)

>lines(edat$t,predict(model1))
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R func



R - nonlinear regression (nls)
y = Ae-t/τ
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R - Plot data and the fit
>model1 <- nls(edat$dat ~ eDecay(edat$t,ampl,tau), start=list(ampl=10,  tau=5), trace=TRUE)

function call initial guessesfluor data
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Read data from a file
>edat <- read.csv("DataGrp1.csv", header = TRUE)

To confirm a successful read:
>edat
    X  t         dat 
1   1  0 10.13859677 
2   2  1  8.35533476 
3   3  2  6.76788472 
4   4  3  5.36280912

>plot(edat$t, edat$dat)

Go to Moodle

Find out what group you are in

Download your group data file

Launch R

Read the data in

Plot the data
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Read data from a file
>edat <- read.csv("DataGrp1.csv", header = TRUE)

To confirm a successful read:
>edat
    X  t         dat 
1   1  0 10.13859677 
2   2  1  8.35533476 
3   3  2  6.76788472 
4   4  3  5.36280912

>plot(edat$t, edat$dat)

What does 
this look like?

Exponential 
decay



Let’s make the plot prettier
>plot(edat$t, edat$dat, xlab=“Time (s)”, ylab=“Fluorescence”)
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Return to Breakout Group

Re-plot the data as above

Remember “up-arrow”

Watch out for “curly quotes”
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Log scale
>plot(edat$t, edat$dat, xlab=“Time (s)”, ylab=“Fluorescence”, log="y")

In the old days, 
they’d get out a ruler 

Why doesn’t 
Craig like this?
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Come up with a function
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y = B + Ae-t/τ

Come up with a function

misrepresented 
error
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Come up with and define a function

y = Ae-t/τ

y = B + Ae-t/τ
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Come up with and define a function
>eDecay <- function(t, ampl, tau) (ampl*exp(-t/tau))

y = Ae-t/τ

define parametersfunc name func definition

>plot(t, eDecay(edat$t,10,5))



R - nonlinear regression (nls)
>eDecay <- function(t, ampl, tau) (ampl*exp(-t/tau))

y = Ae-t/τ

define parametersfunc name func definition

Return to Breakout Group

>model1 <- nls(edat$dat ~ eDecay(edat$t,ampl,tau), start=list(ampl=10,  tau=5), trace=TRUE)

function call initial guessesfluor data

Compare experimental data to theory
Results 
stored 
here

>summary(model1)



R - nonlinear regression (nls)

y = Ae-t/τ

>model1 <- nls(edat$dat ~ eDecay(edat$t,ampl,tau), start=list(ampl=10,  tau=5), trace=TRUE)

function call initial guessesfluor data

Formula: edat1$dat ~ eDecay(edat1$t, ampl, tau) 

Parameters: 
     Estimate Std. Error t value Pr(>|t|)     
ampl   9.5239     0.2294   41.52   <2e-16 *** 
tau    6.2702     0.2308   27.16   <2e-16 *** 

Formula: edat2$dat ~ eDecay(edat2$t, ampl, tau) 

Parameters: 
     Estimate Std. Error t value Pr(>|t|)     
ampl   9.3353     0.1727   54.05   <2e-16 *** 
tau    6.3280     0.1788   35.39   <2e-16 *** 

Formula: edat3$dat ~ eDecay(edat3$t, ampl, tau) 

Parameters: 
     Estimate Std. Error t value Pr(>|t|)     
ampl   9.3329     0.1938   48.16   <2e-16 *** 
tau    6.4709     0.2049   31.58   <2e-16 *** 

Formula: edat4$dat ~ eDecay(edat4$t, ampl, tau) 

Parameters: 
     Estimate Std. Error t value Pr(>|t|)     
ampl   9.1827     0.1936   47.44   <2e-16 *** 
tau    6.5311     0.2098   31.12   <2e-16 ***

9.5 ± 0.2 6.3 ± 0.2 s

6.3 ± 0.2 s

6.5 ± 0.2 s

6.5 ± 0.2 s

Rigor and
Reproducibility?



R - Plot data and the fit

y = Ae-t/τ

>model1 <- nls(edat$dat ~ eDecay(edat$t,ampl,tau), start=list(ampl=10,  tau=5), trace=TRUE)

function call initial guessesfluor data

9.5 ± 0.2 6.3 ± 0.2 s

9.3 ± 0.2 6.3 ± 0.2 s

9.3 ± 0.2 6.5 ± 0.2 s

9.2 ± 0.2 6.5 ± 0.2 s

>plot(edat$t, edat$dat)

>lines(edat$t,predict(model1))
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R func



R - nonlinear regression (nls)
y = Ae-t/τ
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R - Plot data and the fit
>model1 <- nls(edat$dat ~ eDecay(edat$t,ampl,tau), start=list(ampl=10,  tau=5), trace=TRUE)

function call initial guessesfluor data
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R - nonlinear regression (nls)
y = Ae-t/τ
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R - nonlinear regression (nls)
y = Ae-t/τ
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Observations?Reproducible!

y = Ae-t/τ

9.5 ± 0.2 6.3 ± 0.2 s
9.3 ± 0.2 6.3 ± 0.2 s
9.3 ± 0.2 6.5 ± 0.2 s
9.2 ± 0.2 6.5 ± 0.2 s

Rigorous?



R - Plot data and the fit
>model1 <- nls(edat$dat ~ eDecay(edat$t,ampl,tau), start=list(ampl=10,  tau=5), trace=TRUE)

function call initial guessesfluor data
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Mathematical goal of curve fitting



R - Residuals
y = Ae-t/τ

>plot(edat$t,residuals(model1))
>abline(h=c(0.0), lty=2)
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Return to Breakout Group
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R - Residuals
y = Ae-t/τ
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R - Residuals
y = Ae-t/τ

Observations?

Residuals ≈ “Noise”
(or at least we supposed)

Noise should be 
randomly distributed
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In fact, the fitting assumes 
a normal distribution in 

the noise
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Wrong Model?
y = Ae-t/τ
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>model2 <- nls(edat$dat ~ eDecay2(edat$t,ampl,f,tau1,tau2), start=list(ampl=10,  f=0.5, tau1=3, tau2=8), trace=TRUE)

?
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Wrong Model?
y = Ae-t/τ
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>model2 <- nls(edat$dat ~ eDecay2(edat$t,ampl,f,tau1,tau2), start=list(ampl=10,  f=0.5, tau1=3, tau2=8), trace=TRUE)

?
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Wrong Model?
y = Ae-t/τ
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y = A[fe-t/τ1 + (1-f)e-t/τ2]
biexponential decay

>eDecay2 <- function(t, ampl, f, tau1, tau2) (ampl*((f*exp(-t/tau1))+((1-f)*exp(-t/tau2))))

define parametersfunc name func definition

>model2 <- nls(edat$dat ~ eDecay2(edat$t,ampl,f,tau1,tau2), start=list(ampl=10,  f=0.5, tau1=3, tau2=8), trace=TRUE)

Return to Breakout Group

?



R - nonlinear regression (nls)

Formula: edat1$dat ~ eDecay(edat1$t, ampl, tau) 

Parameters: 
     Estimate Std. Error t value Pr(>|t|)   
   
ampl   9.5239     0.2294   41.52   <2e-16 *** 
tau    6.2702     0.2308   27.16   <2e-16 *** 

Formula: edat2$dat ~ eDecay(edat2$t, ampl, tau) 

ampl   9.3353     0.1727   54.05   <2e-16 *** 
tau    6.3280     0.1788   35.39   <2e-16 *** 

Formula: edat3$dat ~ eDecay(edat3$t, ampl, tau) 

ampl   9.3329     0.1938   48.16   <2e-16 *** 
tau    6.4709     0.2049   31.58   <2e-16 *** 

Formula: edat4$dat ~ eDecay(edat4$t, ampl, tau) 

ampl   9.1827     0.1936   47.44   <2e-16 *** 
tau    6.5311     0.2098   31.12   <2e-16 ***

Formula: edat1$dat ~ eDecay2(edat1$t, ampl, f1, tau1, tau2) 

Parameters: 
     Estimate Std. Error t value Pr(>|t|)  

    
ampl  10.1816     0.1912  53.241  < 2e-16 *** 
f      0.6374     0.1074   5.933 7.75e-07 *** 
tau1   3.4062     0.5409   6.297 2.49e-07 *** 
tau2  11.8507     2.0367   5.818 1.11e-06 *** 

Formula: edat2$dat ~ eDecay2(edat2$t, ampl, f1, tau1, tau2) 

ampl   9.9212     0.1512  65.614  < 2e-16 *** 
f      0.4342     0.1035   4.195 0.000163 *** 
tau1   2.7866     0.5781   4.820 2.46e-05 *** 
tau2   8.9873     0.8865  10.138 3.16e-12 *** 

Formula: edat3$dat ~ eDecay2(edat3$t, ampl, f1, tau1, tau2) 

ampl   9.8412     0.1867  52.709  < 2e-16 *** 
f      0.5901     0.1615   3.654 0.000795 *** 
tau1   3.6538     0.7715   4.736 3.18e-05 *** 
tau2  10.8119     2.1369   5.060 1.17e-05 *** 

Formula: edat4$dat ~ eDecay2(edat4$t, ampl, f1, tau1, tau2) 

ampl  9.86679    0.15321  64.401  < 2e-16 *** 
f     0.49242    0.08878   5.547 2.58e-06 *** 
tau1  2.90183    0.49557   5.856 9.85e-07 *** 
tau2 10.03356    1.00571   9.977 4.89e-12 *** 

>eDecay2 <- function(t, ampl, f, tau1, tau2) (ampl*((f*exp(-t/tau1))+((1-f)*exp(-t/tau2))))
>model2 <- nls(edat$dat ~ eDecay2(edat$t, ampl, f, tau1, tau2), start=list(ampl=10,  f=0.5, tau1=2.5, tau1=10), trace=TRUE)

Return to Breakout Group

y = A[fe-t/τ1 + (1-f)e-t/τ2]

>summary(model2)

y = Ae-t/τ



R - nonlinear regression (nls)

Formula: edat1$dat ~ eDecay2(edat1$t, ampl, f1, tau1, tau2) 

Parameters: 
     Estimate Std. Error t value Pr(>|t|)  

    
ampl  10.1816     0.1912  53.241  < 2e-16 *** 
f      0.6374     0.1074   5.933 7.75e-07 *** 
tau1   3.4062     0.5409   6.297 2.49e-07 *** 
tau2  11.8507     2.0367   5.818 1.11e-06 *** 

Formula: edat2$dat ~ eDecay2(edat2$t, ampl, f1, tau1, tau2) 

ampl   9.9212     0.1512  65.614  < 2e-16 *** 
f      0.4342     0.1035   4.195 0.000163 *** 
tau1   2.7866     0.5781   4.820 2.46e-05 *** 
tau2   8.9873     0.8865  10.138 3.16e-12 *** 

Formula: edat3$dat ~ eDecay2(edat3$t, ampl, f1, tau1, tau2) 

ampl   9.8412     0.1867  52.709  < 2e-16 *** 
f      0.5901     0.1615   3.654 0.000795 *** 
tau1   3.6538     0.7715   4.736 3.18e-05 *** 
tau2  10.8119     2.1369   5.060 1.17e-05 *** 

Formula: edat4$dat ~ eDecay2(edat4$t, ampl, f1, tau1, tau2) 

ampl  9.86679    0.15321  64.401  < 2e-16 *** 
f     0.49242    0.08878   5.547 2.58e-06 *** 
tau1  2.90183    0.49557   5.856 9.85e-07 *** 
tau2 10.03356    1.00571   9.977 4.89e-12 *** 

y = A[fe-t/τ1 + (1-f)e-t/τ2]

10.2 ± 0.2 3.4 ± 0.5 s

9.9 ± 0.2 2.8 ± 0.6 s

9.8 ± 0.2 3.7 ± 0.8 s

9.9 ± 0.2 2.9 ± 0.5 s

0.64 ± 0.11

0.43 ± 0.10

0.59 ± 0.16 s

0.49 ± 0.09 s

12 ± 2 s

  9 ± 1 s

11 ± 2 s

10 ± 1 s

>eDecay2 <- function(t, ampl, f, tau1, tau2) (ampl*((f*exp(-t/tau1))+((1-f)*exp(-t/tau2))))
>model2 <- nls(edat$dat ~ eDecay2(edat$t, ampl, f, tau1, tau2), start=list(ampl=10,  f=0.5, tau1=2.5, tau1=10), trace=TRUE)

y = A[fe-t/τ1 + (1-f)e-t/τ2]



R - nonlinear regression (nls)

y = A[fe-t/τ1 + (1-f)e-t/τ2]

10.2 ± 0.2 3.4 ± 0.5 s
9.9 ± 0.2 2.8 ± 0.6 s
9.8 ± 0.2 3.7 ± 0.8 s
9.9 ± 0.2 2.9 ± 0.5 s

0.64 ± 0.11
0.43 ± 0.10
0.59 ± 0.16 s
0.49 ± 0.09 s

12 ± 2 s
  9 ± 1 s
11 ± 2 s
10 ± 1 s

y = Ae-t/τ

9.5 ± 0.2 6.3 ± 0.2 s
9.3 ± 0.2 6.3 ± 0.2 s
9.3 ± 0.2 6.5 ± 0.2 s
9.2 ± 0.2 6.5 ± 0.2 s

>eDecay2 <- function(t, ampl, f, tau1, tau2) (ampl*((f*exp(-t/tau1))+((1-f)*exp(-t/tau2))))
>model2 <- nls(edat$dat ~ eDecay2(edat$t, ampl, f, tau1, tau2), start=list(ampl=10,  f=0.5, tau1=2.5, tau1=10), trace=TRUE)

y = A[fe-t/τ1 + (1-f)e-t/τ2]

Less 
reproducible



R - nonlinear regression (nls)
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y = A[fe-t/τ1 + (1-f)e-t/τ2]

y = Ae-t/τ

10.2 ± 0.2 τ1 =   3.4 ± 0.5 s

0.64 ± 0.11
τ2 = 12 ± 2 s

9.5 ± 0.2 τ = 6.3 ± 0.2 s

Better!



R - residuals
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R - residuals
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R - residuals

y = A[fe-t/τ1 + (1-f)e-t/τ2] y = Ae-t/τ

ReproducibleReproducible
Rigorous?More rigorous

10.2 ± 0.2 τ1 =   3.4 ± 0.5 s
0.64 ± 0.11 τ2 = 12 ± 2 s 9.5 ± 0.2 τ = 6.3 ± 0.2 s
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Parameters more uncertain: why?

    Estimate Std. Error t value Pr(>|t|)   
   
ampl   9.5239     0.2294   41.52   <2e-16 *** 
tau    6.2702     0.2308   27.16   <2e-16 ***

   Estimate Std. Error t value Pr(>|t|)  
    

ampl  10.1816     0.1912  53.241  < 2e-16 *** 
f      0.6374     0.1074   5.933 7.75e-07 *** 
tau1   3.4062     0.5409   6.297 2.49e-07 *** 
tau2  11.8507     2.0367   5.818 1.11e-06 ***

Better!



R - residuals

y = Ae-t/τ

9.5 ± 0.2 τ = 6.3 ± 0.2 s
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    Estimate Std. Error t value Pr(>|t|)   
   
ampl   9.5239     0.2294   41.52   <2e-16 *** 
tau    6.2702     0.2308   27.16   <2e-16 ***

Noise should be 
randomly distributed

In fact, the fitting assumes 
a normal distribution in 

the noise



R - residuals

y = A[fe-t/τ1 + (1-f)e-t/τ2]

10.2 ± 0.2 τ1 =   3.4 ± 0.5 s
0.64 ± 0.11 τ2 = 12 ± 2 s
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Noise should be 
randomly distributed

In fact, the fitting assumes 
a normal distribution in 

the noise



R - residuals

y = Ae-t/τ y = A[fe-t/τ1 + (1-f)e-t/τ2]

We will rarely have this much data!



R - residuals

y = A[fe-t/τ1 + (1-f)e-t/τ2] y = Ae-t/τ
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R - residuals

y = A[fe-t/τ1 + (1-f)e-t/τ2]
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Perhaps we should fit 
with a Tri-Exponential?
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A = 9.96 ± 0.09 τ1 = 3.16 ± 0.30 sf = 0.53 ± 0.06 τ2 = 10.2 ± 0.7 s
9.79…10.13 2.57…3.760.42…0.64 8.85…11.58

9.78…10.13 2.55…3.800.42…0.66 9.03…12.05
-1.7%  +1.7% -19.4%   +20.2%-21.5%   +23.6% -11.6%   +18.0%

± 1.7% ± 18.8%± 21.7% ± 13.4%

param ± std error
( param ± 2(st err) )

percent

97.5% confidence interval
percent

summary(model)

confint(model)

y = A[fe-t/τ1 + (1-f)e-t/τ2]



A = 9.96 ± 0.09 τ1 = 3.16 ± 0.30 sf = 0.53 ± 0.06 τ2 = 10.2 ± 0.7 s
9.79…10.13 2.57…3.760.42…0.64 8.85…11.58

9.78…10.13 2.55…3.800.42…0.66 9.03…12.05
-1.7%  +1.7% -19.4%   +20.2%-21.5%   +23.6% -11.6%   +18.0%

± 1.7% ± 18.8%± 21.7% ± 13.4%

param ± std error
( param ± 2(st err) )

percent

97.5% confidence interval
percent

summary(model)

confint(model)
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y = A[fe-t/τ1 + (1-f)e-t/τ2]



A = 9.96 ± 0.09 τ1 = 3.16 ± 0.30 sf = 0.53 ± 0.06 τ2 = 10.2 ± 0.7 s
9.79…10.13 2.57…3.760.42…0.64 8.85…11.58

9.78…10.13 2.55…3.800.42…0.66 9.03…12.05
-1.7%  +1.7% -19.4%   +20.2%-21.5%   +23.6% -11.6%   +18.0%

± 1.7% ± 18.8%± 21.7% ± 13.4%

param ± std error
( param ± 2(st err) )

percent

97.5% confidence interval
percent

summary(model)

confint(model)
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y = A[fe-t/τ1 + (1-f)e-t/τ2]



A = 9.96 ± 0.09 τ1 = 3.16 ± 0.30 sf = 0.53 ± 0.06 τ2 = 10.2 ± 0.7 s
9.79…10.13 2.57…3.760.42…0.64 8.85…11.58

9.78…10.13 2.55…3.800.42…0.66 9.03…12.05
-1.7%  +1.7% -19.4%   +20.2%-21.5%   +23.6% -11.6%   +18.0%

± 1.7% ± 18.8%± 21.7% ± 13.4%

param ± std error
( param ± 2(st err) )

percent

97.5% confidence interval
percent

summary(model)

confint(model)
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y = A[fe-t/τ1 + (1-f)e-t/τ2]
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A = 9.96 ± 0.09 τ1 = 3.16 ± 0.30 sf = 0.53 ± 0.06 τ2 = 10.2 ± 0.7 s
9.79…10.13 2.57…3.760.42…0.64 8.85…11.58

9.78…10.13 2.55…3.800.42…0.66 9.03…12.05

A = 9.96 ± 0.09 τ1 = 3.16 ± 0.30 sf = 0.53 ± 0.06 τ2 = 10.2 ± 0.7 s
9.79…10.13 2.57…3.760.42…0.64 8.85…11.58

9.78…10.13 2.55…3.800.42…0.66 9.03…12.05

y = A[fe-t/τ1 + (1-f)e-t/τ2]

τ1 = 3.2 s τ2 = 10.2 s
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A = 9.96 ± 0.09 τ1 = 3.16 ± 0.30 sf = 0.53 ± 0.06 τ2 = 10.2 ± 0.7 s
9.79…10.13 2.57…3.760.42…0.64 8.85…11.58

9.78…10.13 2.55…3.800.42…0.66 9.03…12.05

A = 9.96 ± 0.09 τ1 = 3.16 ± 0.30 sf = 0.53 ± 0.06 τ2 = 10.2 ± 0.7 s
9.79…10.13 2.57…3.760.42…0.64 8.85…11.58

9.78…10.13 2.55…3.800.42…0.66 9.03…12.05
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y = A[fe-t/τ1 + (1-f)e-t/τ2]

f = 0.53 τ2 = 10.2 s



y = A[fe-t/τ1 + (1-f)e-t/τ2]
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Correlation of Parameter Estimates: 
     ampl  f     tau1  
f    -0.23             
tau1 -0.46  0.93       
tau2 -0.23  0.97  0.86

R command

R output

summary(model2, correlation = TRUE)



y = A[fe-t/τ1 + (1-f)e-t/τ2]
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R command

R output

summary(model2, correlation = TRUE)

Correlation of Parameter Estimates: 
      ampl   f    tau1  tau2 
ampl  1.00 -0.23 -0.46 -0.23 
f    -0.23  1.00  0.93  0.97 
tau1 -0.46  0.93  1.00  0.86 
tau2 -0.23  0.97  0.86  1.00

0 = no correlaYon

1 = full correlaYon

-1 = full anY-correlaYon



y = A[fe-t/τ1 + (1-f)e-t/τ2]
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R command

R output

summary(model2, correlation = TRUE)

Correlation of Parameter Estimates: 
      ampl   f    tau1  tau2 
ampl  1.00 -0.23 -0.46 -0.23 
f    -0.23  1.00  0.93  0.97 
tau1 -0.46  0.93  1.00  0.86 
tau2 -0.23  0.97  0.86  1.00

0 = no correlaYon

1 = full correlaYon

-1 = full anY-correlaYon



y = A[fe-t/τ1 + (1-f)e-t/τ2]
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R command

R outputCorrelation of Parameter Estimates: 
      ampl   f    tau1  tau2 
ampl  1.00 -0.23 -0.46 -0.23 
f    -0.23  1.00  0.93  0.97 
tau1 -0.46  0.93  1.00  0.86 
tau2 -0.23  0.97  0.86  1.00

0 = no correlaYon

1 = full correlaYon

-1 = full anY-correlaYon



y = A[fe-t/τ1 + (1-f)e-t/τ2]
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R command

R outputCorrelation of Parameter Estimates: 
      ampl   f    tau1  tau2 
ampl  1.00 -0.23 -0.46 -0.23 
f    -0.23  1.00  0.93  0.97 
tau1 -0.46  0.93  1.00  0.86 
tau2 -0.23  0.97  0.86  1.00

0 = no correlaYon

1 = full correlaYon

-1 = full anY-correlaYon

Perhaps we should fit 
with a Tri-Exponential?

Not enough independent information
Indeed, nls crashes when you try (singularity)
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A = 9.96 ± 0.09 τ1 = 3.16 ± 0.30 sf = 0.53 ± 0.06 τ2 = 10.2 ± 0.7 s
9.79…10.13 2.57…3.760.42…0.64 8.85…11.58

9.78…10.13 2.55…3.800.42…0.66 9.03…12.05

y = A[fe-t/τ1 + (1-f)e-t/τ2]

τ2 = 10.2 s

pf=profile(model2) 
plot(pf, conf = c( 99, 95, 90, 80, 50)/100,  absVal = TRUE, ylab = NULL, lty = 2)
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y = A[fe-t/τ1 + (1-f)e-t/τ2]

Correlation of Parameter Estimates: 
      ampl   f    tau1  tau2 
ampl  1.00 -0.23 -0.46 -0.23 
f    -0.23  1.00  0.93  0.97 
tau1 -0.46  0.93  1.00  0.86 
tau2 -0.23  0.97  0.86  1.00

summary(model2, correlation = TRUE) R command

R output



y = A[fe-t/τ1 + (1-f)e-t/τ2]

Correlation of Parameter Estimates: 
      ampl   f    tau1  tau2 
ampl  1.00 -0.23 -0.46 -0.23 
f    -0.23  1.00  0.93  0.97 
tau1 -0.46  0.93  1.00  0.86 
tau2 -0.23  0.97  0.86  1.00
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Parameters: 
     Estimate Std. Error t value Pr(>|t|)     
ampl  9.95572    0.08520 116.856   <2e-16 *** 
f1    0.53314    0.05767   9.244   <2e-16 *** 
tau1  3.16427    0.29720  10.647   <2e-16 *** 
tau2 10.21256    0.68244  14.965   <2e-16 ***

ampl 9.78 … 10.139 
f1   0.42 …  0.66 
tau1 2.55 …  3.80 
tau2 9.03 … 12.05

tau1 2.57 …  3.75 
tau2 8.85 … 11.58

95%

plot(ellipse(model2,level=c(0.95),which=c('myTau1','myTau2')), type = 'l')
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y = A[fe-t/τ1 + (1-f)e-t/τ2]



y = A[fe-t/τ1 + (1-f)e-t/τ2]
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Mono Exponential
Bi Exponential

Analysis of Variance Table 

Model 1: edt$dat ~ eDecay(edt$t, ampl, tau) 
Model 2: edt$dat ~ eDecay2(edt$t, ampl, f1, tau1, tau2) 

  Res.Df Res.Sum Sq Df Sum Sq F value    Pr(>F)     
1    162    13.3479                                 
2    160     5.7151  2 7.6328  106.84 < 2.2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

anova(model1, model2)
A good model not only needs to fit data well, 
it also needs to be parsimonious. That is, a good 
model should be only be as complex as 
necessary to describe a dataset.

If you are choosing between a simple model 
with 2 parameters, and a more complex 
model with, say, 4 parameters, the complex 
model needs to provide a much better fit to 
the data in order to justify its increased 
complexity. If it can’t, then the simpler model 
should be preferred.

To compare the fits of two models, you can 
use the anova() function with the regression 
objects as two separate arguments. The 
anova() function will take the model objects as 
arguments, and return an ANOVA testing 
whether the more complex model is 
significantly better at capturing the data than 
the simpler model. If the resulting p-value is 
sufficiently low (usually less than 0.05), we 
conclude that the more complex model is 
significantly better than the simpler model, and 
thus favor the more complex model. If the p-
value is not sufficiently low (usually greater 
than 0.05), we should favor the simpler model.

Adapted from:
https://bookdown.org/ndphillips/YaRrr/comparing-regression-models-with-anova.html

y = A[fe-t/τ1 + (1-f)e-t/τ2]

y = Ae-t/τ



Question: I drove to New Haven recently.
It took me 1 hr 25 min, driving at 70 mi/hr.
How far is it from Amherst to New Haven?

70mi
hr

⎛
⎝⎜

⎞
⎠⎟
85min( ) hr

60min
⎛
⎝⎜

⎞
⎠⎟
=

99.167 miles

0.001 miles = 5 ft

Write your answer on a 
piece of paper



Question: I drove to New Haven recently.
Google Maps says that it’s 91 miles.

It took me 1 hr 25 min
How fast was I driving, on average?

91mi
85min

60min
hr

⎛
⎝⎜

⎞
⎠⎟
=

64.2353 miles/hour



Alexa: will it rain tomorrow?

“You can expect 1.34 inches of rain tomorrow”

Parameters: 
     Estimate Std. Error t value Pr(>|t|)     
ampl  9.95572    0.08520 116.856   <2e-16 *** 
f1    0.53314    0.05767   9.244   <2e-16 *** 
tau1  3.16427    0.29720  10.647   <2e-16 *** 
tau2 10.21256    0.68244  14.965   <2e-16 ***



Significant Figures - Rules

#2 )  Addition / Subtraction

123.45
 85.3
  1.959
210.709

210.7

If you don’t 
know this digit

Then you don’t 
know this digit

Don’t report it!



Significant Figures - Rules

#2 )  Addition / Subtraction

123.45
 85.3
  1.959
210.709

210.7

#3 )  Multiplication / Division

123.45 x 1.95 = 240.7275

241

5 sig figs 3 sig figs

3 sig figs

If you don’t 
know this digit

Then you don’t 
know this digit

Don’t report it!



Significant Figures - Rules

#2 )  Addition / Subtraction

123.45
 85.3
  1.959
210.709

210.7

#3 )  Multiplication / Division

123.45 x 1.95 = 240.7275

241

5 sig figs 3 sig figs

3 sig figs

#1 ) Think - be reasonable!  Always!
How much do you believe that last digit?

If you don’t 
know this digit

Then you don’t 
know this digit

Don’t report it!



Sources of Error
• Sample concentration

- A280, Bradford, etc

• Sample purity

- Other proteins, absorbers

• Sample activity



Sources of Error
• Sample activity

80% Active



Sources of Error
• Sample activity

??% Active



Sources of Error
• Sample activity Equivalence Point



Sample Activity

These approaches only work for 
tight-binding interactions

Fitting all data is better than the 
approach shown at right



Methods to Measure Binding 
Filter Binding
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32P 32P32P 32P
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Similar protocols?
- pull down assay
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that involve washing
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Binding Assays

• Non-equilibrium assays that separate complexes
– Filter binding
– Pull-down
– Gel shift

322

more or less

• Equilibrium assays
– Fluorescence

• Changes in quantum yield
• Changes in wavelength maxima
• Changes in anisotropy

– Protection assays (quantitative footprinting, etc)
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Equilibrium Math

A + B
Kd⎯ →⎯← ⎯⎯ AB

Kd =
A[ ] B[ ]
AB[ ]

AT = A[ ] + AB[ ]
BT = B[ ] + AB[ ]

Knowns

A[ ] = AT − AB[ ]
B[ ] = BT − AB[ ]

Kd AB[ ] = A[ ] B[ ] = AT − AB[ ]( ) BT − AB[ ]( )
Kdx = AT − x( ) BT − x( )

Assume BT >> x

Kdx ≈ AT − x( )BT
BT + Kd( )x ≈ AT BT

x = AB[ ] ≈ AT BT
BT + Kd

AB[ ]
AT

≈
BT

BT + Kd

Fraction Bound
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Equilibrium Math

A + B
Kd⎯ →⎯← ⎯⎯ AB

f =
AB[ ]
AT

=
AT + BT + Kd( ) − AT + BT + Kd( )2 − 4AT BT

2AT

Fraction Bound

x =
AT + BT + Kd( ) − AT + BT + Kd( )2 − 4AT BT

2
= AB[ ]

At half-saturation, ƒ=0.5

0.5 =
AB[ ]
AT

=
AT + BT + Kd( ) − AT + BT + Kd( )2 − 4AT BT
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LigBndGen <- function(Lt, Kd, Pt, Au, Ab) (Au + (Ab-Au)*(((Kd+Pt+Lt)-sqrt((Kd+Pt+Lt)^2-4*Pt*Lt))/2)/Pt )

A = Au  +  f (Ab-Au)

(   Au  +  (Ab-Au)*( (Kd+Pt+Lt) - sqrt[ (Kd+Pt+Lt)^2 - 4*Pt*Lt ] / (2*Pt) )   )

model <- nls(Anis ~ LigBndGen(l,myKd,10,myAu,myAb), start=list(myKd=4,myAu=0.15,myAb=0.35))
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Levenberg - Marqardt

The Levenberg-Marquardt algorithm
The Levenberg-Marquardt algorithm is derived directly from the 
mean square deviation expressions (8) or (10) and cannot be used 
with deviation functions R other then the square deviation R(d) = 
d2.
The Levenberg-Marquardt algorithm is a very fast fitting algorithm. 
Its performance, however, depends strongly on the behavior of the 
function to be fitted as well as on the selected starting parameters.

The classical version of the Levenberg-Marquardt algorithm does 
not allow for x-errors and minimizes the mean square deviation 
(10). The algorithm can be described in words as follows:

Starting from a given set of parameters, the mean square 
deviation X2 is calculated. Then the parameters are varied slightly to observe their influence on X2. From this, 
the direction in which X2 decreases most rapidly can be evaluated and a new set of parameters is chosen. This 
procedure is reiterated with this new set of parameters . When the minimum is near, the algorithm goes over to a 
more deterministic “guessing” at the position of the minimum and solves some equations to find it. The fitting stops 
when the value of X2 does not decrease anymore between successive steps.

The algorithm is described in W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes - the Art 
of Scientific Computing, Second Edition, University Press, Cambridge, 1992. When x-errors are specified, the 
algorithm is modified in such a way that it minimizes (8). It finds at the same time the set of x-coordinates xˆ i and the 
function parameters that minimize the mean square deviations between the data points (xi , yi ) and the function 
values (xˆ i , f (xˆ i )).

d Σ Χ2

d Kd

Χ2

Kd
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Monte Carlo

The Monte Carlo algorithm
This method randomly varies the parameters of a function within 
given intervals. When x-errors are defined, the algorithm also 
varies randomly the set of x-coordinates xˆ i while observing the 
given errors and error distributions.

For each random guess, XR is calculated according to Eq. (2) and 
the parameter sets corresponding to the smallest values of XR are 
remembered.

The strength of this method is also its biggest disadvantage. It 
looks for the best parameter set by shooting blindly inside the 
given region of parameter space. Although there is an option of letting this parameter space region follow the 
position of the currently best parameter set, this algorithm can only
converge very slowly towards the best parameter set.

Its main use is to “scan” parameter space in order to find good parameter starting values for one of the deterministic 
fit algorithms, or to try to “jump out” of a local minimum where a deterministic fitting algorithm is stuck.

Since the algorithm is normally used for a first estimate of fitted parameters, it is not recommended to run it with non-
zero x-errors – this merely slows down the algorithm without substantially increasing the accuracy of the estimates

Χ2

Ab

local 
minimum global 

minimum
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Equilibrium Math

A + B
Kd⎯ →⎯← ⎯⎯ AB

Kd =
A[ ] B[ ]
AB[ ]

AT = A[ ] + AB[ ]
BT = B[ ] + AB[ ]

Knowns

A[ ] = AT − AB[ ]
B[ ] = BT − AB[ ]

Kd AB[ ] = A[ ] B[ ] = AT − AB[ ]( ) BT − AB[ ]( )
Kdx = AT − x( ) BT − x( )

Assume BT >> x

Kdx ≈ AT − x( )BT
BT + Kd( )x ≈ AT BT

x = AB[ ] ≈ AT BT
BT + Kd

AB[ ]
AT

≈
BT

BT + Kd

Fraction Bound
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x2 − AT + BT + Kd( )x + AT BT = 0

ax2 + bx + c = 0        x = −b ± b2 − 4ac
2a



Equilibrium Math

A + B
Kd⎯ →⎯← ⎯⎯ AB

Kd =
A[ ] B[ ]
AB[ ]

AT = A[ ] + AB[ ]
BT = B[ ] + AB[ ]

Knowns

A[ ] = AT − AB[ ]
B[ ] = BT − AB[ ]

Kd AB[ ] = A[ ] B[ ] = AT − AB[ ]( ) BT − AB[ ]( )

Kdx = AT − x( ) BT − x( )

Assume BT >> x

x2 − AT + BT + Kd( )x + AT BT = 0

ax2 + bx + c = 0        x = −b ± b2 − 4ac
2a

x =
AT + BT + Kd( ) − AT + BT + Kd( )2 − 4AT BT

2
= AB[ ]



Equilibrium Math

A + B
Kd⎯ →⎯← ⎯⎯ AB

Kd =
A[ ] B[ ]
AB[ ]

AT = A[ ] + AB[ ]
BT = B[ ] + AB[ ]

Knowns

A[ ] = AT − AB[ ]
B[ ] = BT − AB[ ]

Kd AB[ ] = A[ ] B[ ] = AT − AB[ ]( ) BT − AB[ ]( )

Kdx = AT − x( ) BT − x( )

Assume BT >> x
AB[ ]
AT

Fraction Bound

x2 − AT + BT + Kd( )x + AT BT = 0

ax2 + bx + c = 0        x = −b ± b2 − 4ac
2a

x =
AT + BT + Kd( ) − AT + BT + Kd( )2 − 4AT BT

2
= AB[ ]



Equilibrium Math

A + B
Kd⎯ →⎯← ⎯⎯ AB

f =
AB[ ]
AT

=
AT + BT + Kd( ) − AT + BT + Kd( )2 − 4AT BT

2AT

Fraction Bound

x =
AT + BT + Kd( ) − AT + BT + Kd( )2 − 4AT BT

2
= AB[ ]

At half-saturation, ƒ=0.5

0.5 =
AB[ ]
AT

=
AT + BT + Kd( ) − AT + BT + Kd( )2 − 4AT BT

2AT
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Fraction Bound

f ≈ 1

1+ Kd
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At half-saturation, ƒ=0.5

LT = Kd

Fraction Bound

At half-saturation, ƒ=0.5

f =
PL[ ]
PT

=
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LT =
1
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PT + Kd

Assume L >> P No assumptions
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P + L
Kd⎯ →⎯← ⎯⎯ PL

f =
PL[ ]
PT

=
PT + LT + Kd( ) − PT + LT + Kd( )2 − 4PT LT

2PT

LigBndGen <- function(Lt, Kd, Pt, Au, Ab) (Au + (Ab-Au)*(((Kd+Pt+Lt)-sqrt((Kd+Pt+Lt)^2-4*Pt*Lt))/2)/Pt )

A = Au  +  f (Ab-Au)

(   Au  +  (Ab-Au)*( (Kd+Pt+Lt) - sqrt[ (Kd+Pt+Lt)^2 - 4*Pt*Lt ] / (2*Pt) )   )

model <- nls(Anis ~ LigBndGen(l,myKd,10,myAu,myAb), start=list(myKd=4,myAu=0.15,myAb=0.35))



[P] = 10 µMEquilibrium Math

P + L
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Fraction Bound

f ≈ 1

1+ Kd

LT

At half-saturation, ƒ=0.5

LT = Kd

Fraction Bound

At half-saturation, ƒ=0.5

f =
PL[ ]
PT

=
PT + LT + Kd( ) − PT + LT + Kd( )2 − 4PT LT

2PT

LT =
1
2
PT + Kd

Assume L >> P No assumptions
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1
2
PT + Kd

Assume L >> P No assumptions



Levenberg - Marqardt

The Levenberg-Marquardt algorithm
The Levenberg-Marquardt algorithm is derived directly from the 
mean square deviation expressions (8) or (10) and cannot be used 
with deviation functions R other then the square deviation R(d) = 
d2.
The Levenberg-Marquardt algorithm is a very fast fitting algorithm. 
Its performance, however, depends strongly on the behavior of the 
function to be fitted as well as on the selected starting parameters.

The classical version of the Levenberg-Marquardt algorithm does 
not allow for x-errors and minimizes the mean square deviation 
(10). The algorithm can be described in words as follows:

Starting from a given set of parameters, the mean square 
deviation X2 is calculated. Then the parameters are varied slightly to observe their influence on X2. From this, 
the direction in which X2 decreases most rapidly can be evaluated and a new set of parameters is chosen. This 
procedure is reiterated with this new set of parameters . When the minimum is near, the algorithm goes over to a 
more deterministic “guessing” at the position of the minimum and solves some equations to find it. The fitting stops 
when the value of X2 does not decrease anymore between successive steps.

The algorithm is described in W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes - the Art 
of Scientific Computing, Second Edition, University Press, Cambridge, 1992. When x-errors are specified, the 
algorithm is modified in such a way that it minimizes (8). It finds at the same time the set of x-coordinates xˆ i and the 
function parameters that minimize the mean square deviations between the data points (xi , yi ) and the function 
values (xˆ i , f (xˆ i )).

d Σ Χ2

d Kd

Χ2

Kd
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The Levenberg-Marquardt algorithm
The Levenberg-Marquardt algorithm is derived directly from the 
mean square deviation expressions (8) or (10) and cannot be used 
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Levenberg - Marqardt

The Levenberg-Marquardt algorithm
The Levenberg-Marquardt algorithm is derived directly from the 
mean square deviation expressions (8) or (10) and cannot be used 
with deviation functions R other then the square deviation R(d) = 
d2.
The Levenberg-Marquardt algorithm is a very fast fitting algorithm. 
Its performance, however, depends strongly on the behavior of the 
function to be fitted as well as on the selected starting parameters.

The classical version of the Levenberg-Marquardt algorithm does 
not allow for x-errors and minimizes the mean square deviation 
(10). The algorithm can be described in words as follows:

Starting from a given set of parameters, the mean square 
deviation X2 is calculated. Then the parameters are varied slightly to observe their influence on X2. From this, 
the direction in which X2 decreases most rapidly can be evaluated and a new set of parameters is chosen. This 
procedure is reiterated with this new set of parameters . When the minimum is near, the algorithm goes over to a 
more deterministic “guessing” at the position of the minimum and solves some equations to find it. The fitting stops 
when the value of X2 does not decrease anymore between successive steps.

The algorithm is described in W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes - the Art 
of Scientific Computing, Second Edition, University Press, Cambridge, 1992. When x-errors are specified, the 
algorithm is modified in such a way that it minimizes (8). It finds at the same time the set of x-coordinates xˆ i and the 
function parameters that minimize the mean square deviations between the data points (xi , yi ) and the function 
values (xˆ i , f (xˆ i )).
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Monte Carlo

The Monte Carlo algorithm
This method randomly varies the parameters of a function within 
given intervals. When x-errors are defined, the algorithm also 
varies randomly the set of x-coordinates xˆ i while observing the 
given errors and error distributions.

For each random guess, XR is calculated according to Eq. (2) and 
the parameter sets corresponding to the smallest values of XR are 
remembered.

The strength of this method is also its biggest disadvantage. It 
looks for the best parameter set by shooting blindly inside the 
given region of parameter space. Although there is an option of letting this parameter space region follow the 
position of the currently best parameter set, this algorithm can only
converge very slowly towards the best parameter set.

Its main use is to “scan” parameter space in order to find good parameter starting values for one of the deterministic 
fit algorithms, or to try to “jump out” of a local minimum where a deterministic fitting algorithm is stuck.

Since the algorithm is normally used for a first estimate of fitted parameters, it is not recommended to run it with non-
zero x-errors – this merely slows down the algorithm without substantially increasing the accuracy of the estimates

Χ2

Ab

local 
minimum global 

minimum



March 23, 2021

you can have it all

Complex, accurate, and easier* kinetics

Well, easier* is relative…



Michaelis-Menten Kinetics
What assumptions do we make

substrate in excess
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Rate Equations 
First Order Decay

−
∂ A[ ]
∂t

= k A[ ]

∂ A[ ]
A[ ]∫ = −k ∂t∫
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Rate Equations 
Bimolecular Association

−
∂ AB[ ]
∂t

= −k1 A[ ] B[ ] + k−1 AB[ ]

A + B
k1

k−1
⎯ →⎯← ⎯⎯ AB



Rate Equations 
Bimolecular Association

−
∂ AB[ ]
∂t

= −k1 A[ ] B[ ] + k−1 AB[ ]

Approximations

Early time [AB] << [A], [B]

−
∂ AB[ ]
∂t

≈ −k1 A[ ] B[ ]

And excess [B]

−
∂ AB[ ]
∂t

≈ − k1 B[ ]( ) A[ ] ≈ − k1
'( ) A[ ]

A + B
k1

k−1
⎯ →⎯← ⎯⎯ AB

AB[ ] = AB[ ]max 1− e
−kobs t( )

kobs depends on [B]

≈easy



Rate Equations 
Bimolecular Association

A + B
k1

k−1
⎯ →⎯← ⎯⎯ AB −

∂ AB[ ]
∂t

= −k1 A[ ] B[ ] + k−1 AB[ ]

kobs = k1 B[ ] + k−1

OK, what assumptions?
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Rate Equations 
Bimolecular Association

A + B
k1

k−1
⎯ →⎯← ⎯⎯ AB −

∂ AB[ ]
∂t

= −k1 A[ ] B[ ] + k−1 AB[ ]

kobs = k1 B[ ] + k−1

OK, what assumptions?
B in large excess
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What is the problem here?

Iterations: 
6
-------------------------------------------
Chi squared       
= 
15.1578
Goodness of fit   
= 
0.1264

Parameters:   
 
 
Standard deviations:
deg  
= 
 1.0000
const
= 
28.4998   
∆const 
= 
186.2243
a1   
= 
43.5194   
∆a1   
= 
  4.5993

-------------------------------------------
Confidence intervals (
95.000% ):
const
-336.7976 
... 
427.8580
a1   
  33.3910 
... 
 52.5907
(based on 
500 converging iterations)

k-1 = 28 ± 186
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Complex Kinetics 
Exact* and Easy*

In the 20th century, we looked for one equation to fit

A single equation predicts [Y] at time t

But maybe we have a program predict [Y] at t

How?
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Complex Kinetics 
Exact* and Easy*

E A+ B E D+

C

k1 k2

∂ A[ ]
∂t

= −k1 E[ ] A[ ] ∂ D[ ]
∂t

= k2 B[ ] C[ ]

∂ C[ ]
∂t

= −k2 B[ ] C[ ]
∂ B[ ]
∂t

= k1 E[ ] A[ ]− k2 B[ ] C[ ]

∂ E[ ]
∂t

= k2 B[ ] C[ ]− k1 E[ ] A[ ]



Complex Kinetics 
Exact* and Easy*

E A+ B E D+

C

k1 k2

∂ A[ ]
∂t

= −k1 E[ ] A[ ]

A[ ]t+∆ t = A[ ]t +
∂ A[ ]
∂t

∆ t = A[ ]t − k1 E[ ]t A[ ]t ∆ t

A[ ]tfinal = ∂ A[ ]
t=0

tfinal

∫ = −k1 E[ ]t A[ ]t ∂t
t=0

tfinal

∫
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Complex Kinetics 
Exact* and Easy*

E A+ B E D+

C

k1 k2

∂ B[ ]
∂t

= k1 E[ ] A[ ]− k2 B[ ] C[ ]

B[ ]t+∆ t = B[ ]t +
∂ B[ ]
∂t

∆ t = B[ ]t + k1 E[ ]t A[ ]t − k2 B[ ]t C[ ]t( )∆ t
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Complex Kinetics 
Exact* and Easy*

E A+ B E D+

C

k1 k2

∂ D[ ]
∂t

= k2 B[ ] C[ ]

D[ ]t+∆ t = D[ ]t +
∂ D[ ]
∂t

∆ t = D[ ]t + k2 B[ ]t C[ ]t ∆ t
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Complex Kinetics 
Exact* and Easy*

E A+ B E D+

C

k1 k2

∂ C[ ]
∂t

= −k2 B[ ] C[ ]

C[ ]t+∆ t = C[ ]t +
∂ C[ ]
∂t

∆ t = C[ ]t − k2 B[ ]t C[ ]t ∆ t
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Complex Kinetics 
Exact* and Easy*

E A+ B E D+

C

k1 k2

∂ E[ ]
∂t

= k2 B[ ] C[ ]− k1 E[ ] A[ ]

E[ ]t+∆ t = E[ ]t +
∂ E[ ]
∂t

∆ t = E[ ]t + k2 B[ ]t C[ ]t − k1 E[ ]t A[ ]t( )∆ t
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Complex Kinetics 
Exact* and Easy*

E A+ B E D+

C

k1 k2

Starting concentrations E0, A0, B0, C0, D0

increment by ∆E, ∆A, ∆B, ∆C, ∆D in ∆trepeat ttotal / ∆t  times

A[ ]t+∆ t = A[ ]t − k1 E[ ]t A[ ]t ∆ t
B[ ]t+∆ t = B[ ]t + k1 E[ ]t A[ ]t − k2 B[ ]t C[ ]t( )∆ t

D[ ]t+∆ t = D[ ]t + k2 B[ ]t C[ ]t ∆ t
C[ ]t+∆ t = C[ ]t − k2 B[ ]t C[ ]t ∆ t
E[ ]t+∆ t = E[ ]t + k2 B[ ]t C[ ]t − k1 E[ ]t A[ ]t( )∆ t
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Complex Kinetics 
Exact* and Easy*

E A+ B E D+

C

k1 k2

∂ A[ ]
∂t

= −k1 E[ ] A[ ]

∂ B[ ]
∂t

= k1 E[ ] A[ ]− k2 B[ ] C[ ]

∂ C[ ]
∂t

= −k2 B[ ] C[ ]

∂ D[ ]
∂t

= k2 B[ ] C[ ]

∂ E[ ]
∂t

= k2 B[ ] C[ ]− k1 E[ ] A[ ]

    time <- seq(0, 50, by = 0.01)
    
    # parameters
    parameters <- c(k1=0.08, k2=0.02)
    
    # initial conditions
    state <- c(A=5,B=0,C=50,D=0,E=5)
    
    # R function to calculate the value of the derivatives at each time value
    # Use the names of the variables as defined in the vectors above

    multiKin <- function(t, state, parameters){
      with(as.list(c(state, parameters)), {
        dA = -k1*E*A
        dB = k1*E*A - k2*B*C
        dC = -k2*B*C
        dD = k2*B*C
        dE = k2*B*C - k1*E*A
        return(list(c(dA, dB, dC, dD, dE)))
      })
    }
    ## Integration with 'ode' - ordinary differential equations
    out <- ode(y = state, times = time, func = multiKin, parms = parameters)



0 5 10 15 20 25 30

0
1

2
3

4
5

Time (s)

C
on

ce
nt

ra
tio

n

A
B
C
D
E

421

Complex Kinetics 
Exact* and Easy*

E A+ B E D+

C

k1 k2

    time <- seq(0, 50, by = 0.01)
    
    # parameters: a named vector
    parameters <- c(k1=0.08, k2=0.02)
    
    # initial condition: a named vector
    state <- c(A=5,B=0,C=50,D=0,E=5)
    
    # R function to calculate the value of the derivatives at each time value
    # Use the names of the variables as defined in the vectors above
    multiKin <- function(t, state, parameters){
      with(as.list(c(state, parameters)), {
        dA = -k1*E*A
        dB = k1*E*A - k2*B*C
        dC = -k2*B*C
        dD = k2*B*C
        dE = k2*B*C - k1*E*A
        return(list(c(dA, dB, dC, dD, dE)))
      })
    }
    ## Integration with 'ode' - ordinary differential equations
    out <- ode(y = state, times = time, func = multiKin, parms = parameters)
    
    ## Ploting
    out.df = as.data.frame(out)
    
    plot(out.df$time, out.df$A, type="l", col="green")
    lines(out.df$time, out.df$B, col="purple")
    lines(out.df$time, out.df$C, col="red")
    lines(out.df$time, out.df$D, col="blue")
    lines(out.df$time, out.df$E, col="brown")

5 µM5 µM
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Complex Kinetics 
Exact* and Easy*

E A+ B E D+

C

k1 k2

    time <- seq(0, 50, by = 0.01)
    
    # parameters: a named vector
    parameters <- c(k1=0.08, k2=0.02)
    
    # initial condition: a named vector
    state <- c(A=5,B=0,C=50,D=0,E=0.5)
    
    # R function to calculate the value of the derivatives at each time value
    # Use the names of the variables as defined in the vectors above
    multiKin <- function(t, state, parameters){
      with(as.list(c(state, parameters)), {
        dA = -k1*E*A
        dB = k1*E*A - k2*B*C
        dC = -k2*B*C
        dD = k2*B*C
        dE = k2*B*C - k1*E*A
        return(list(c(dA, dB, dC, dD, dE)))
      })
    }
    ## Integration with 'ode' - ordinary differential equations
    out <- ode(y = state, times = time, func = multiKin, parms = parameters)
    
    ## Ploting
    out.df = as.data.frame(out)
    
    plot(out.df$time, out.df$A, type="l", col="green")
    lines(out.df$time, out.df$B, col="purple")
    lines(out.df$time, out.df$C, col="red")
    lines(out.df$time, out.df$D, col="blue")
    lines(out.df$time, out.df$E, col="brown")
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Hands on with R - simulating kinetics
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Mar 25, 2021

Happy Biophysics Week!!!



Enzyme Kinetics

424

k1

k-1

kc

Assume [P] negligible

Assume steady state



Enzyme Kinetics

425

k1

k-1

kc

Assume substrate in excess

Assume ligand in excess

Assume [P] negligible
Assume steady state



Enzyme Kinetics

427

k1

k-1

kc

kr

dE <-  -k1*E*S + km1*ES + kc*ES - kr*E*P
dS <-  -k1*E*S + km1*ES
dES <- k1*E*S - km1*ES - kc*ES + kr*E*P    
dP <-  kc*ES - kr*E*P



EnzKin <- function(t0=0, tf, tincr=(tf-t0)/50, k1p, km1p, kcp, krp=0, E0, S0, ES0=0, P0=0) {

# create a time range
time <- seq(t0, tf, by = tincr)

# parameters:
parameters <- c(k1=k1p, km1=km1p, kc=kcp, kr=krp)

# initial condition:
state <- c(E=E0, S=S0, ES=ES0, P=P0)

# R function to calculate the value of the derivatives at each time value
# Use the names of the variables as defined in the vectors above
# define in same order as specified above in state
multiKin <- function(t, state, parameters){
  with(as.list(c(state, parameters)), {

dE <-  -k1*E*S + km1*ES + kc*ES - kr*E*P
dS <-  -k1*E*S + km1*ES
dES <- k1*E*S - km1*ES - kc*ES + kr*E*P    
dP <-  kc*ES - kr*E*P

# return derivatives in same relative order as specified above in state
return(list(c(dE, dS, dES, dP)))

  })
}  ## end of function multiKin

## Integration with 'ode' - ordinary differential equations
out1 <- ode(y = state, times = time, func = multiKin, parms = parameters)

# get results as a dataframe
df <- as.data.frame(out1)

# return a list with things we might want to access directly in plotting, etc
outl <- list("output"=out1, "t"=time, "E"=df$E, "S"=df$S, "ES"=df$ES, "P"=df$P )

return(outl)
 }
# call the above function (you can omit optional parameters)
 out <- EnzKin(tf=15,  tincr=0.01, k1p=0.1, km1p=0.1, kcp=0.2, E0=0.2, S0=20.0)
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Assume [P] negligible
Assume steady state

dE <-  -k1*E*S + km1*ES + kc*ES - kr*E*P
dS <-  -k1*E*S + km1*ES
dES <- k1*E*S - km1*ES - kc*ES + kr*E*P    
dP <-  kc*ES - kr*E*P

# plot the results (this will auto-scale to the product range; over-ride if desired)
plot( out$t, out$P, col="green", type="l", xlab="Time (s)", ylab="Concentration")
lines(out$t, out$E, col="purple")
lines(out$t, out$ES, col="red")
lines(out$t, out$S, col="blue")

legend(200, 3, c("P", "E", "ES", "S"), col = c("green", "purple", "red", "blue"), lty=c("solid","solid","solid","solid"))
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Enzyme Kinetics Assume [P] negligible
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Break out exercise

• Go to Moodle and download today’s R script
• Run it in R to generate the graph we just saw
• You will have to install the “deSolve” package

– For help go to the bottom of the “R – fitting data 
to a mathematical model” web site created for this 
course.

• Then just run the script
– source(“EnzymeKinetics.txt")
– (remember not to use “curly” quotes)
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Break out exercise

• Drop the substrate concentration from 20 µM 
to 2 µM

• Replot
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Break out exercise

• Keep substrate at 2 µM
• Run the reaction for 150 s
• Replot
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Enzyme Kinetics
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Enzyme Kinetics
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Break out exercise

• Let’s an inhibitor
• Replot
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Hands on with R - simulating kinetics
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Happy Biophysics Week!!!
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Enzyme Kinetics
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Enzyme Kinetics

427

k1

k-1

kc

kr

dE <-  -k1*E*S + km1*ES + kc*ES - kr*E*P
dS <-  -k1*E*S + km1*ES
dES <- k1*E*S - km1*ES - kc*ES + kr*E*P    
dP <-  kc*ES - kr*E*P



EnzKin <- function(t0=0, tf, tincr=(tf-t0)/50, k1p, km1p, kcp, krp=0, E0, S0, ES0=0, P0=0) {

# create a time range
time <- seq(t0, tf, by = tincr)

# parameters:
parameters <- c(k1=k1p, km1=km1p, kc=kcp, kr=krp)

# initial condition:
state <- c(E=E0, S=S0, ES=ES0, P=P0)

# R function to calculate the value of the derivatives at each time value
# Use the names of the variables as defined in the vectors above
# define in same order as specified above in state
multiKin <- function(t, state, parameters){
  with(as.list(c(state, parameters)), {

dE <-  -k1*E*S + km1*ES + kc*ES - kr*E*P
dS <-  -k1*E*S + km1*ES
dES <- k1*E*S - km1*ES - kc*ES + kr*E*P    
dP <-  kc*ES - kr*E*P

# return derivatives in same relative order as specified above in state
return(list(c(dE, dS, dES, dP)))

  })
}  ## end of function multiKin

## Integration with 'ode' - ordinary differential equations
out1 <- ode(y = state, times = time, func = multiKin, parms = parameters)

# get results as a dataframe
df <- as.data.frame(out1)

# return a list with things we might want to access directly in plotting, etc
outl <- list("output"=out1, "t"=time, "E"=df$E, "S"=df$S, "ES"=df$ES, "P"=df$P )

return(outl)
 }
# call the above function (you can omit optional parameters)
 out <- EnzKin(tf=15,  tincr=0.01, k1p=0.1, km1p=0.1, kcp=0.2, E0=0.2, S0=20.0)
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Assume [P] negligible
Assume steady state

dE <-  -k1*E*S + km1*ES + kc*ES - kr*E*P
dS <-  -k1*E*S + km1*ES
dES <- k1*E*S - km1*ES - kc*ES + kr*E*P    
dP <-  kc*ES - kr*E*P

# plot the results (this will auto-scale to the product range; over-ride if desired)
plot( out$t, out$P, col="green", type="l", xlab="Time (s)", ylab="Concentration")
lines(out$t, out$E, col="purple")
lines(out$t, out$ES, col="red")
lines(out$t, out$S, col="blue")

legend(200, 3, c("P", "E", "ES", "S"), col = c("green", "purple", "red", "blue"), lty=c("solid","solid","solid","solid"))

0.1 µM-1 s-1

0.1 s-1

0.2 s-1

0.001 µM-1 s-1

optional
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Enzyme Kinetics Assume [P] negligible
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Break out exercise

• Go to Moodle and download today’s R script
• Run it in R to generate the graph we just saw
• You will have to install the “deSolve” package

– For help go to the bottom of the “R – fitting data 
to a mathematical model” web site created for this 
course.

• Then just run the script
– source(“EnzymeKinetics.txt")
– (remember not to use “curly” quotes)
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Enzyme Kinetics
[Enz] = 0.2 µM
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Break out exercise

• Drop the substrate concentration from 20 µM 
to 2 µM

• Replot

432



433

Enzyme Kinetics
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Break out exercise

• Keep substrate at 2 µM
• Run the reaction for 150 s
• Replot
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Enzyme Kinetics
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Enzyme Kinetics
[Enz] = 0.2 µM
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Break out exercise

• Let’s an inhibitor
• Replot
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Independent Binding
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Cooperativity
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AB + B AB

at very low [B]

Kobs ≈αKa

Kobs ≈ Ka

at very high [B]
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Cooperativity Effect on Affinity
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α<1 negative decreases

Cooperativity - Multiple identical sites



Multiple independent, identical sites

B[ ]≈ B[ ]Total
Ligand in excess

from Scatchard et al., single binding site (n=1)



Multiple independent, identical sites

B[ ]≈ B[ ]Total
Ligand in excess

from Scatchard et al., single binding site (n=1)

purely empirical!
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empty
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The reported Hill coefficient is the maximal nH (slope)
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all full

Max coop



slope = nH

dependent (cooperative) sites

varies with [L]

“Transformations of equations into linear forms such as 
this were very useful before the widespread use of 
computers, as they allowed researchers to determine 
parameters by fitting lines to data. However, these 
transformations affect error propagation, and this may 
result in undue weight to error in data points near 0 or 1.
[nb 2] This impacts the parameters of linear regression 
lines fitted to the data. Furthermore, the use of computers 
enables more robust analysis involving nonlinear 
regression.”

From Wikipedia article on the Hill Equation:

“All of these formulations assume that the 
protein has n sites to which ligands can bind. In 
practice, however, the Hill Coefficient nH rarely 
provides an accurate approximation of the 
number of ligand binding sites on a protein.[5]
[7] Consequently, it has been observed that the 
Hill coefficient should instead be interpreted as 
an "interaction coefficient" describing the 
cooperativity among ligand binding sites.[5]”

From Wikipedia article on the Hill Equation:



Multiple Binding Sites 
Identical, Independent Sites
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Models for Cooperativity 
MWC - Monod, Wyman, Changeux

R - stronger ligand binding (kr)

T - weaker ligand binding (kt)

Mixed R & T - not allowed - two state only



Models for Cooperativity 
MWC - Monod, Wyman, Changeux

R - stronger 
(kr)

T - weaker 
(kt)

LRT =
T
R



Models for Cooperativity 
KNF - Koshland, Nemethy, Filmer

R - stronger ligand binding (kr)

T - weaker ligand binding (kt)

Intermediate states allowed

AKA - the Sequential Model



Cooperativity

A

B

A

C

A

B

C

A

B

C
+

+ C

+

B

+

 A + B <> AB  AB + C <> ABC

 A + C <> AC  AC + B <> ABC

Structural/chemical adaptation



Cooperativity

P

L

P
C

P

L

C

+

+ C

+

L

+

 P + L <> PL

 P + I <> PC

Inhibition of Ligand Binding



Cooperativity

E

S

E
I

E

S

I

E

S

I
+

+ I

+

S

+

 E + S <> ES  ES + I <> ESI

 E + I <> EI  EI + S <> ESI

Enzyme Inhibition E + P

EI + P



Thermodynamics Overview

∆G 0 =∆H 0 −T∆ S 0−RT lnK = K = e
−∆G

0

RT

∂lnK
∂T

= ∆H
0

RT 2 Assuming?
van’t Hoff Equation

lnK = −∆G
0

RT

lnKT2 − lnKT1 = −
∆GT2

0

RT
+
∆GT1

0

RT

lnKT2 = lnKT1 = −
∆HT2

0

RT2
+
∆HT1

0

RT1
+
∆ ST2

0 −∆ ST1
0

R

lnKT2 = lnKT1 =
∆HT

0

R
− 1
T2

+ 1
T1

⎛
⎝⎜

⎞
⎠⎟
= ∆HT

0

R
T2 −T1
T1T2

⎛
⎝⎜

⎞
⎠⎟ Assuming?

lnK = −∆H
0

RT
+T∆ S

0

RT
= −∆H

0

RT
+ ∆ S

0

R
lnK = −∆H

0

RT
+T∆ S

0

RT
= −∆H

0

RT
+ ∆ S

0

R

∆H°
∆S°

Heat capacity

CP =
∂qrev
∂T

⎛
⎝⎜

⎞
⎠⎟ P



ITC - Isothermal Titration Calorimetry
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P + L
Ka= 1Kd⎯ →⎯⎯⎯← ⎯⎯⎯ PL

very small heat loss

-0.40
-0.35
-0.30
-0.25
-0.20
-0.15
-0.10
-0.05
0.00very small 

heat input

ΔG = RT lnQ −RT lnKa

ΔG = 0 = RT ln PL[ ]
P[ ] L[ ] −RT lnKa

q = ΔH Δ PL[ ]
∆[PL]  = -∆[P] = -∆[L] 



ITC - Isothermal Titration Calorimetry
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P + L
Ka= 1Kd⎯ →⎯⎯⎯← ⎯⎯⎯ PL

-0.40
-0.35
-0.30
-0.25
-0.20
-0.15
-0.10
-0.05
0.00

q = ΔH Δ PL[ ]

0 2 4 6 8 10

0.0

0.4

0.8

very small heat loss

very small 
heat input
P [
]=

P [
] 0   

L [
]=

0 
  
PL [

]=
0

P [
]=

0 
  
L [
]=

∞
   
PL [

]=
P [
] 0

Δ
PL [

]
Δ
PL [

] Δ
PL [

]

Δ
PL [

]
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[P] = 0.5 µM

# Titrations = 15

Kd = 100 µM
∆H = -12 kcal/mol

Cell volume = 200 µL

Injection volume = 2 µL

[L]stock = 3804 µM

∆[L]Tot = 38 µM

-0.40
-0.35
-0.30
-0.25
-0.20
-0.15
-0.10
-0.05
0.00

Integrate each peak

Syringe volume = 40 µL



Isothermal Titration Calorimetry (ITC)
q =  heat energy added to system

Negative peak: 
  exothermic

Integrate peak to get q 
(µcal/injection)



Isothermal Titration Calorimetry (ITC)
q =  heat energy added to system

∆Gbind
0 T( ) = −RT lnKa = ∆ Hbind

0 − T ∆ Sbind
0

lnKa =
−∆ Hbind

0

RT
+
∆ Sbind

0

R
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Titration Vadded Vnet [L]tot [PL] ∆[PL] q (µcal)

0 0 370 0 0

1 2 372 20 0.085 0.085 -0.378

2 4 374 41 0.144 0.060 -0.268

3 6 376 61 0.188 0.044 -0.200

4 8 378 80 0.223 0.034 -0.155

15 30 400 285 0.370 0.006 -0.030

28 56 426 500 0.417 0.002 -0.011

[P] = 0.5 µM

# Titrations = 28

Kd = 100 µM
∆H = -12 kcal/mol

Cell volume = 370 µL

Injection volume = 2 µL

[L]stock = 3804 µM

[L]Tot = 500 µM
final

-0.40
-0.35
-0.30
-0.25
-0.20
-0.15
-0.10
-0.05
0.00

PL[ ]= PT + LT +Kd( )− PT + LT +Kd( )2 − 4PTLT
2

q = Δ PL[ ]⋅Vnet ⋅∆H
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Titration Vadded Vnet [L]tot [PL] ∆[PL] q (µcal)

0 0 370 0 0

1 2 372 20 0.085 0.085 -0.378

2 4 374 41 0.144 0.060 -0.268

3 6 376 61 0.188 0.044 -0.200

4 8 378 80 0.223 0.034 -0.155

15 30 400 285 0.370 0.006 -0.030

28 56 426 500 0.417 0.002 -0.011

Kd = 100 µM
∆H = -12 kcal/mol

-0.40
-0.35
-0.30
-0.25
-0.20
-0.15
-0.10
-0.05
0.00

PL[ ]= PT + LT +Kd( )− PT + LT +Kd( )2 − 4PTLT
2

q = Δ PL[ ]⋅Vnet ⋅∆H

[L]tot
[P]tot



ITC - Isothermal Titration Calorimetry
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P + L
Ka= 1Kd⎯ →⎯⎯⎯← ⎯⎯⎯ PL

-0.40
-0.35
-0.30
-0.25
-0.20
-0.15
-0.10
-0.05
0.00

very small heat loss

very small 
heat input
P [
]=

P [
] 0   

L [
]=

0 
  
PL [

]=
0

P [
]=

0 
  
L [
]=

∞
   
PL [

]=
P [
] 0

Δ
PL [

]
Δ
PL [

]

Δ
PL [

]

Δ
PL [

]

q = ΔH Δ PL[ ]

f ∝ qi
i=0

i=n

∑

This is not 
going to zero!

…why not?
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Buffer 
(Mis)Match

∆H for dissolution of NaCl is +0.9 kcal/mol

NaCl is10 mM

Caveats
∆H measured is for the entire sample

Titration Vadded Vnet [L]tot [PL] ∆[PL] q (µcal)

4 8 378 80 0.223 0.034 -0.155

Change in [PL] is 0.034 µM

∆H = -12 kcal/mol

Protein is 0.5 µM

NaCl is more than 20,000X that of protein

0.001× 0.022 ×10mM = 0.22µMdilution =

Assume buffer mismatch = 0.1%

q = 0.22 ×10−6mol
L

⎛
⎝⎜

⎞
⎠⎟
0.9kcal
mol

⎛
⎝⎜

⎞
⎠⎟ 370 ×10

−6L( ) 10
9 µcal
kcal

⎛
⎝⎜

⎞
⎠⎟
= 0.073µcal

Dilution per injection is 8/378= 0.022
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Another caveat

∆H measured is for the entire sample
Ligand binding might lead to indirect heats
Protonation of Tris buffer ∆H = 11.3 kcal/mol

∆H = -12 kcal/mol

P + L <==> PL
PH+ + L <==> PL + H+

H+ + Tris- <==> TrisH

∆H = -12 kcal/mol

∆H = 11.3 kcal/mol

Back to Gen Chem & PChem
Definition of  “system”

30 mM Tris
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Titration Vadded Vnet [L]tot [PL] ∆[PL] q (µcal)

0 0 370 0 0

1 2 372 20 0.085 0.085 -0.378

2 4 374 41 0.144 0.060 -0.268

3 6 376 61 0.188 0.044 -0.200

4 8 378 80 0.223 0.034 -0.155

15 30 400 285 0.370 0.006 -0.030

28 56 426 500 0.417 0.002 -0.011

[P] = 0.5 µM

# Titrations = 28

Kd = 100 µM
∆H = -12 kcal/mol

Cell volume = 370 µL

Injection volume = 2 µL

[L]stock = 3804 µM

[L]Tot = 500 µM
final

-0.40
-0.35
-0.30
-0.25
-0.20
-0.15
-0.10
-0.05
0.00

PL[ ]= PT + LT +Kd( )− PT + LT +Kd( )2 − 4PTLT
2

q = Δ PL[ ]⋅Vnet ⋅∆H
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[M] = 69 µM

# Titrations = 23

Cell volume = 201.9 µL

Injection volume = 1.7 µL

[X]stock = 1.035 mM

DH INJV Xt Mt XMt NDH Fit DY

0.98819 0.5 0 0.069 0.03619 -- 2299.99 --

4.01479 1.7 0.00249 0.06883 0.15988 2281.78 2292.82 -11.04176

4.07614 1.7 0.01092 0.06827 0.28458 2316.65 2276.50 40.14832

3.9874 1.7 0.01927 0.06772 0.41028 2266.21 2247.79 18.41812

3.86433 1.7 0.02756 0.06716 0.53699 2196.27 2191.38 4.88868

3.54838 1.7 0.03577 0.06661 0.66471 2016.70 2063.29 -46.5927

3.021 1.7 0.04392 0.06607 0.79344 1716.96 1739.43 -22.46873

1.96747 1.7 0.052 0.06553 0.92317 1118.20 1096.36 21.83654

0.91076 1.7 0.06 0.065 1.05391 517.62 501.20 16.42658

0.402 1.7 0.06794 0.06447 1.18565 228.47 227.82 0.65576

0.14295 1.7 0.07581 0.06394 1.31841 81.24 120.26 -39.02183

0.02726 1.7 0.08361 0.06342 1.45217 15.50 72.24 -56.74176

0.0026 1.7 0.09134 0.0629 1.58693 1.48 47.53 -46.04968

-0.04201 1.7 0.099 0.06238 1.7227 -23.88 33.35 -57.22539

-0.00329 1.7 0.10659 0.06187 1.85948 -1.87 24.51 -26.37896

-0.04848 1.7 0.11411 0.06137 1.99727 -27.55 18.65 -46.20145

-0.02632 1.7 0.12156 0.06086 2.13606 -14.96 14.57 -29.5273

-0.03007 1.7 0.12894 0.06037 2.27586 -17.09 11.61 -28.69484

-0.01286 1.7 0.13626 0.05987 2.41667 -7.31 9.39 -16.69765

0.01504 1.7 0.1435 0.05938 2.55849 8.55 7.68 0.86992

0.02926 1.7 0.15067 0.05889 2.70131 16.63 6.33 10.29665

-0.02331 1.7 0.15778 0.05841 2.84513 -13.25 5.24 -18.49181

0.00538 1.7 0.16481 0.05793 2.98997 3.06 4.35 -1.29615

-- 0.17178 0.05745 --

q per injection (µcal)
injection volume (µL)

[X]tot prior to injection (ligand conc)
[M]tot prior to injection

Ratio [X]tot/[M]tot 

q per mole ligand injected

Best fit q per mole ligand added

Residual

(the measurement!)
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[M] = 69 µM

# Titrations = 23

Cell volume = 201.9 µL

Injection volume = 1.7 µL

[X]stock = 1.035 mM

DH INJV Xt Mt XMt NDH Fit DY

0.98819 0.5 0 0.069 0.03619 -- 2299.99 --

4.01479 1.7 0.00249 0.06883 0.15988 2281.78 2292.82 -11.04176

4.07614 1.7 0.01092 0.06827 0.28458 2316.65 2276.50 40.14832

3.9874 1.7 0.01927 0.06772 0.41028 2266.21 2247.79 18.41812

3.86433 1.7 0.02756 0.06716 0.53699 2196.27 2191.38 4.88868

3.54838 1.7 0.03577 0.06661 0.66471 2016.70 2063.29 -46.5927

3.021 1.7 0.04392 0.06607 0.79344 1716.96 1739.43 -22.46873

1.96747 1.7 0.052 0.06553 0.92317 1118.20 1096.36 21.83654

0.91076 1.7 0.06 0.065 1.05391 517.62 501.20 16.42658

0.402 1.7 0.06794 0.06447 1.18565 228.47 227.82 0.65576

0.14295 1.7 0.07581 0.06394 1.31841 81.24 120.26 -39.02183

0.02726 1.7 0.08361 0.06342 1.45217 15.50 72.24 -56.74176

0.0026 1.7 0.09134 0.0629 1.58693 1.48 47.53 -46.04968

-0.04201 1.7 0.099 0.06238 1.7227 -23.88 33.35 -57.22539

-0.00329 1.7 0.10659 0.06187 1.85948 -1.87 24.51 -26.37896

-0.04848 1.7 0.11411 0.06137 1.99727 -27.55 18.65 -46.20145

-0.02632 1.7 0.12156 0.06086 2.13606 -14.96 14.57 -29.5273

-0.03007 1.7 0.12894 0.06037 2.27586 -17.09 11.61 -28.69484

-0.01286 1.7 0.13626 0.05987 2.41667 -7.31 9.39 -16.69765

0.01504 1.7 0.1435 0.05938 2.55849 8.55 7.68 0.86992

0.02926 1.7 0.15067 0.05889 2.70131 16.63 6.33 10.29665

-0.02331 1.7 0.15778 0.05841 2.84513 -13.25 5.24 -18.49181

0.00538 1.7 0.16481 0.05793 2.98997 3.06 4.35 -1.29615

-- 0.17178 0.05745 --

q per injection (µcal)
injection volume (µL)

[X]tot prior to injection (ligand conc)
[M]tot prior to injection

Ratio [X]tot/[M]tot 

q per mole ligand injected

Best fit q per mole ligand added

Residual

(the measurement!)

time (s)

q 
(µ

ca
l/s

)
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[M] = 69 µM

# Titrations = 23

Cell volume = 201.9 µL

Injection volume = 1.7 µL

[X]stock = 1.035 mM

DH INJV Xt Mt XMt NDH Fit DY

0.98819 0.5 0 0.069 0.03619 -- 2299.99 --

4.01479 1.7 0.00249 0.06883 0.15988 2281.78 2292.82 -11.04176

4.07614 1.7 0.01092 0.06827 0.28458 2316.65 2276.50 40.14832

3.9874 1.7 0.01927 0.06772 0.41028 2266.21 2247.79 18.41812

3.86433 1.7 0.02756 0.06716 0.53699 2196.27 2191.38 4.88868

3.54838 1.7 0.03577 0.06661 0.66471 2016.70 2063.29 -46.5927

3.021 1.7 0.04392 0.06607 0.79344 1716.96 1739.43 -22.46873

1.96747 1.7 0.052 0.06553 0.92317 1118.20 1096.36 21.83654

0.91076 1.7 0.06 0.065 1.05391 517.62 501.20 16.42658

0.402 1.7 0.06794 0.06447 1.18565 228.47 227.82 0.65576

0.14295 1.7 0.07581 0.06394 1.31841 81.24 120.26 -39.02183

0.02726 1.7 0.08361 0.06342 1.45217 15.50 72.24 -56.74176

0.0026 1.7 0.09134 0.0629 1.58693 1.48 47.53 -46.04968

-0.04201 1.7 0.099 0.06238 1.7227 -23.88 33.35 -57.22539

-0.00329 1.7 0.10659 0.06187 1.85948 -1.87 24.51 -26.37896

-0.04848 1.7 0.11411 0.06137 1.99727 -27.55 18.65 -46.20145

-0.02632 1.7 0.12156 0.06086 2.13606 -14.96 14.57 -29.5273

-0.03007 1.7 0.12894 0.06037 2.27586 -17.09 11.61 -28.69484

-0.01286 1.7 0.13626 0.05987 2.41667 -7.31 9.39 -16.69765

0.01504 1.7 0.1435 0.05938 2.55849 8.55 7.68 0.86992

0.02926 1.7 0.15067 0.05889 2.70131 16.63 6.33 10.29665

-0.02331 1.7 0.15778 0.05841 2.84513 -13.25 5.24 -18.49181

0.00538 1.7 0.16481 0.05793 2.98997 3.06 4.35 -1.29615

-- 0.17178 0.05745 --

q per injection (µcal)
injection volume (µL)

[X]tot prior to injection (ligand conc)
[M]tot prior to injection

Ratio [X]tot/[M]tot 

q per mole ligand injected

Best fit q per mole ligand added

Residual

(note: increases Volume)
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[M] = 69 µM

# Titrations = 23

Cell volume = 201.9 µL

Injection volume = 1.7 µL

[X]stock = 1.035 mM

DH INJV Xt Mt XMt NDH Fit DY

0.98819 0.5 0 0.069 0.03619 -- 2299.99 --

4.01479 1.7 0.00249 0.06883 0.15988 2281.78 2292.82 -11.04176

4.07614 1.7 0.01092 0.06827 0.28458 2316.65 2276.50 40.14832

3.9874 1.7 0.01927 0.06772 0.41028 2266.21 2247.79 18.41812

3.86433 1.7 0.02756 0.06716 0.53699 2196.27 2191.38 4.88868

3.54838 1.7 0.03577 0.06661 0.66471 2016.70 2063.29 -46.5927

3.021 1.7 0.04392 0.06607 0.79344 1716.96 1739.43 -22.46873

1.96747 1.7 0.052 0.06553 0.92317 1118.20 1096.36 21.83654

0.91076 1.7 0.06 0.065 1.05391 517.62 501.20 16.42658

0.402 1.7 0.06794 0.06447 1.18565 228.47 227.82 0.65576

0.14295 1.7 0.07581 0.06394 1.31841 81.24 120.26 -39.02183

0.02726 1.7 0.08361 0.06342 1.45217 15.50 72.24 -56.74176

0.0026 1.7 0.09134 0.0629 1.58693 1.48 47.53 -46.04968

-0.04201 1.7 0.099 0.06238 1.7227 -23.88 33.35 -57.22539

-0.00329 1.7 0.10659 0.06187 1.85948 -1.87 24.51 -26.37896

-0.04848 1.7 0.11411 0.06137 1.99727 -27.55 18.65 -46.20145

-0.02632 1.7 0.12156 0.06086 2.13606 -14.96 14.57 -29.5273

-0.03007 1.7 0.12894 0.06037 2.27586 -17.09 11.61 -28.69484

-0.01286 1.7 0.13626 0.05987 2.41667 -7.31 9.39 -16.69765

0.01504 1.7 0.1435 0.05938 2.55849 8.55 7.68 0.86992

0.02926 1.7 0.15067 0.05889 2.70131 16.63 6.33 10.29665

-0.02331 1.7 0.15778 0.05841 2.84513 -13.25 5.24 -18.49181

0.00538 1.7 0.16481 0.05793 2.98997 3.06 4.35 -1.29615

-- 0.17178 0.05745 --

q per injection (µcal)
injection volume (µL)

[X]tot prior to injection (ligand conc)
[M]tot prior to injection

Ratio [X]tot/[M]tot 

q per mole ligand injected

Best fit q per mole ligand added

Residual

(corrected for dilution)
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[M] = 69 µM

# Titrations = 23

Cell volume = 201.9 µL

Injection volume = 1.7 µL

[X]stock = 1.035 mM

Both the cell and the cell stem are filled with macromolecule 
solution, but only the active volume is monitored calorimetrically. 
Each injection drives liquid from the active volume into the cell 
stem (darkened portion representing ΔV). Consequently, in a 
typical experiment, Mt decreases slightly (~1%) with each injection. 
We assume no mixing occurs between the active volume and the 
cell stem, so the average bulk concentration of macromolecule in 
ΔV is the computed to be the average of Mt(t=0) and Mt

DH INJV Xt Mt XMt NDH Fit DY

0.98819 0.5 0 0.069 0.03619 -- 2299.99 --

4.01479 1.7 0.00249 0.06883 0.15988 2281.78 2292.82 -11.04176

4.07614 1.7 0.01092 0.06827 0.28458 2316.65 2276.50 40.14832

3.9874 1.7 0.01927 0.06772 0.41028 2266.21 2247.79 18.41812

3.86433 1.7 0.02756 0.06716 0.53699 2196.27 2191.38 4.88868

3.54838 1.7 0.03577 0.06661 0.66471 2016.70 2063.29 -46.5927

3.021 1.7 0.04392 0.06607 0.79344 1716.96 1739.43 -22.46873

1.96747 1.7 0.052 0.06553 0.92317 1118.20 1096.36 21.83654

0.91076 1.7 0.06 0.065 1.05391 517.62 501.20 16.42658

0.402 1.7 0.06794 0.06447 1.18565 228.47 227.82 0.65576

0.14295 1.7 0.07581 0.06394 1.31841 81.24 120.26 -39.02183

0.02726 1.7 0.08361 0.06342 1.45217 15.50 72.24 -56.74176

0.0026 1.7 0.09134 0.0629 1.58693 1.48 47.53 -46.04968

-0.04201 1.7 0.099 0.06238 1.7227 -23.88 33.35 -57.22539

-0.00329 1.7 0.10659 0.06187 1.85948 -1.87 24.51 -26.37896

-0.04848 1.7 0.11411 0.06137 1.99727 -27.55 18.65 -46.20145

-0.02632 1.7 0.12156 0.06086 2.13606 -14.96 14.57 -29.5273

-0.03007 1.7 0.12894 0.06037 2.27586 -17.09 11.61 -28.69484

-0.01286 1.7 0.13626 0.05987 2.41667 -7.31 9.39 -16.69765

0.01504 1.7 0.1435 0.05938 2.55849 8.55 7.68 0.86992

0.02926 1.7 0.15067 0.05889 2.70131 16.63 6.33 10.29665

-0.02331 1.7 0.15778 0.05841 2.84513 -13.25 5.24 -18.49181

0.00538 1.7 0.16481 0.05793 2.98997 3.06 4.35 -1.29615

-- 0.17178 0.05745 --

q per injection (µcal)
injection volume (µL)

[X]tot prior to injection (ligand conc)
[M]tot prior to injection

Ratio [X]tot/[M]tot 

q per mole ligand injected

Best fit q per mole ligand added

Residual

Vtot = 238.1 µL

Vtot = 201.9 µL

( + 20% )

(corrected for dilution)
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[M] = 69 µM

# Titrations = 23

Cell volume = 201.9 µL

Injection volume = 1.7 µL

[X]stock = 1.035 mM

DH INJV Xt Mt XMt NDH Fit DY

0.98819 0.5 0 0.069 0.03619 -- 2299.99 --

4.01479 1.7 0.00249 0.06883 0.15988 2281.78 2292.82 -11.04176

4.07614 1.7 0.01092 0.06827 0.28458 2316.65 2276.50 40.14832

3.9874 1.7 0.01927 0.06772 0.41028 2266.21 2247.79 18.41812

3.86433 1.7 0.02756 0.06716 0.53699 2196.27 2191.38 4.88868

3.54838 1.7 0.03577 0.06661 0.66471 2016.70 2063.29 -46.5927

3.021 1.7 0.04392 0.06607 0.79344 1716.96 1739.43 -22.46873

1.96747 1.7 0.052 0.06553 0.92317 1118.20 1096.36 21.83654

0.91076 1.7 0.06 0.065 1.05391 517.62 501.20 16.42658

0.402 1.7 0.06794 0.06447 1.18565 228.47 227.82 0.65576

0.14295 1.7 0.07581 0.06394 1.31841 81.24 120.26 -39.02183

0.02726 1.7 0.08361 0.06342 1.45217 15.50 72.24 -56.74176

0.0026 1.7 0.09134 0.0629 1.58693 1.48 47.53 -46.04968

-0.04201 1.7 0.099 0.06238 1.7227 -23.88 33.35 -57.22539

-0.00329 1.7 0.10659 0.06187 1.85948 -1.87 24.51 -26.37896

-0.04848 1.7 0.11411 0.06137 1.99727 -27.55 18.65 -46.20145

-0.02632 1.7 0.12156 0.06086 2.13606 -14.96 14.57 -29.5273

-0.03007 1.7 0.12894 0.06037 2.27586 -17.09 11.61 -28.69484

-0.01286 1.7 0.13626 0.05987 2.41667 -7.31 9.39 -16.69765

0.01504 1.7 0.1435 0.05938 2.55849 8.55 7.68 0.86992

0.02926 1.7 0.15067 0.05889 2.70131 16.63 6.33 10.29665

-0.02331 1.7 0.15778 0.05841 2.84513 -13.25 5.24 -18.49181

0.00538 1.7 0.16481 0.05793 2.98997 3.06 4.35 -1.29615

-- 0.17178 0.05745 --

q per injection (µcal)
injection volume (µL)

[X]tot prior to injection (ligand conc)
[M]tot prior to injection

Ratio [X]tot/[M]tot 

q per mole ligand injected

Best fit q per mole ligand added

Residual

(corrected for dilution)
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[M] = 69 µM

# Titrations = 23

Cell volume = 201.9 µL

Injection volume = 1.7 µL

[X]stock = 1.035 mM

DH INJV Xt Mt XMt NDH Fit DY

0.98819 0.5 0 0.069 0.03619 -- 2299.99 --

4.01479 1.7 0.00249 0.06883 0.15988 2281.78 2292.82 -11.04176

4.07614 1.7 0.01092 0.06827 0.28458 2316.65 2276.50 40.14832

3.9874 1.7 0.01927 0.06772 0.41028 2266.21 2247.79 18.41812

3.86433 1.7 0.02756 0.06716 0.53699 2196.27 2191.38 4.88868

3.54838 1.7 0.03577 0.06661 0.66471 2016.70 2063.29 -46.5927

3.021 1.7 0.04392 0.06607 0.79344 1716.96 1739.43 -22.46873

1.96747 1.7 0.052 0.06553 0.92317 1118.20 1096.36 21.83654

0.91076 1.7 0.06 0.065 1.05391 517.62 501.20 16.42658

0.402 1.7 0.06794 0.06447 1.18565 228.47 227.82 0.65576

0.14295 1.7 0.07581 0.06394 1.31841 81.24 120.26 -39.02183

0.02726 1.7 0.08361 0.06342 1.45217 15.50 72.24 -56.74176

0.0026 1.7 0.09134 0.0629 1.58693 1.48 47.53 -46.04968

-0.04201 1.7 0.099 0.06238 1.7227 -23.88 33.35 -57.22539

-0.00329 1.7 0.10659 0.06187 1.85948 -1.87 24.51 -26.37896

-0.04848 1.7 0.11411 0.06137 1.99727 -27.55 18.65 -46.20145

-0.02632 1.7 0.12156 0.06086 2.13606 -14.96 14.57 -29.5273

-0.03007 1.7 0.12894 0.06037 2.27586 -17.09 11.61 -28.69484

-0.01286 1.7 0.13626 0.05987 2.41667 -7.31 9.39 -16.69765

0.01504 1.7 0.1435 0.05938 2.55849 8.55 7.68 0.86992

0.02926 1.7 0.15067 0.05889 2.70131 16.63 6.33 10.29665

-0.02331 1.7 0.15778 0.05841 2.84513 -13.25 5.24 -18.49181

0.00538 1.7 0.16481 0.05793 2.98997 3.06 4.35 -1.29615

-- 0.17178 0.05745 --

q per injection (µcal)
injection volume (µL)

[X]tot prior to injection (ligand conc)
[M]tot prior to injection

Ratio [X]tot/[M]tot 

q per mole ligand injected

Best fit q per mole ligand added

Residual
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[M] = 69 µM

# Titrations = 23

Cell volume = 201.9 µL

Injection volume = 1.7 µL

[X]stock = 1.035 mM

DH INJV Xt Mt XMt NDH Fit DY

0.98819 0.5 0 0.069 0.03619 -- 2299.99 --

4.01479 1.7 0.00249 0.06883 0.15988 2281.78 2292.82 -11.04176

4.07614 1.7 0.01092 0.06827 0.28458 2316.65 2276.50 40.14832

3.9874 1.7 0.01927 0.06772 0.41028 2266.21 2247.79 18.41812

3.86433 1.7 0.02756 0.06716 0.53699 2196.27 2191.38 4.88868

3.54838 1.7 0.03577 0.06661 0.66471 2016.70 2063.29 -46.5927

3.021 1.7 0.04392 0.06607 0.79344 1716.96 1739.43 -22.46873

1.96747 1.7 0.052 0.06553 0.92317 1118.20 1096.36 21.83654

0.91076 1.7 0.06 0.065 1.05391 517.62 501.20 16.42658

0.402 1.7 0.06794 0.06447 1.18565 228.47 227.82 0.65576

0.14295 1.7 0.07581 0.06394 1.31841 81.24 120.26 -39.02183

0.02726 1.7 0.08361 0.06342 1.45217 15.50 72.24 -56.74176

0.0026 1.7 0.09134 0.0629 1.58693 1.48 47.53 -46.04968

-0.04201 1.7 0.099 0.06238 1.7227 -23.88 33.35 -57.22539

-0.00329 1.7 0.10659 0.06187 1.85948 -1.87 24.51 -26.37896

-0.04848 1.7 0.11411 0.06137 1.99727 -27.55 18.65 -46.20145

-0.02632 1.7 0.12156 0.06086 2.13606 -14.96 14.57 -29.5273

-0.03007 1.7 0.12894 0.06037 2.27586 -17.09 11.61 -28.69484

-0.01286 1.7 0.13626 0.05987 2.41667 -7.31 9.39 -16.69765

0.01504 1.7 0.1435 0.05938 2.55849 8.55 7.68 0.86992

0.02926 1.7 0.15067 0.05889 2.70131 16.63 6.33 10.29665

-0.02331 1.7 0.15778 0.05841 2.84513 -13.25 5.24 -18.49181

0.00538 1.7 0.16481 0.05793 2.98997 3.06 4.35 -1.29615

-- 0.17178 0.05745 --

q per injection (µcal)
injection volume (µL)

[X]tot prior to injection (ligand conc)
[M]tot prior to injection

Ratio [X]tot/[M]tot 

q per mole ligand injected

Best fit q per mole ligand added

Residual
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[M] = 69 µM

# Titrations = 23

Cell volume = 201.9 µL

Injection volume = 1.7 µL

[X]stock = 1.035 mM

DH INJV Xt Mt XMt NDH Fit DY

0.98819 0.5 0 0.069 0.03619 -- 2299.99 --

4.01479 1.7 0.00249 0.06883 0.15988 2281.78 2292.82 -11.04176

4.07614 1.7 0.01092 0.06827 0.28458 2316.65 2276.50 40.14832

3.9874 1.7 0.01927 0.06772 0.41028 2266.21 2247.79 18.41812

3.86433 1.7 0.02756 0.06716 0.53699 2196.27 2191.38 4.88868

3.54838 1.7 0.03577 0.06661 0.66471 2016.70 2063.29 -46.5927

3.021 1.7 0.04392 0.06607 0.79344 1716.96 1739.43 -22.46873

1.96747 1.7 0.052 0.06553 0.92317 1118.20 1096.36 21.83654

0.91076 1.7 0.06 0.065 1.05391 517.62 501.20 16.42658

0.402 1.7 0.06794 0.06447 1.18565 228.47 227.82 0.65576

0.14295 1.7 0.07581 0.06394 1.31841 81.24 120.26 -39.02183

0.02726 1.7 0.08361 0.06342 1.45217 15.50 72.24 -56.74176

0.0026 1.7 0.09134 0.0629 1.58693 1.48 47.53 -46.04968

-0.04201 1.7 0.099 0.06238 1.7227 -23.88 33.35 -57.22539

-0.00329 1.7 0.10659 0.06187 1.85948 -1.87 24.51 -26.37896

-0.04848 1.7 0.11411 0.06137 1.99727 -27.55 18.65 -46.20145

-0.02632 1.7 0.12156 0.06086 2.13606 -14.96 14.57 -29.5273

-0.03007 1.7 0.12894 0.06037 2.27586 -17.09 11.61 -28.69484

-0.01286 1.7 0.13626 0.05987 2.41667 -7.31 9.39 -16.69765

0.01504 1.7 0.1435 0.05938 2.55849 8.55 7.68 0.86992

0.02926 1.7 0.15067 0.05889 2.70131 16.63 6.33 10.29665

-0.02331 1.7 0.15778 0.05841 2.84513 -13.25 5.24 -18.49181

0.00538 1.7 0.16481 0.05793 2.98997 3.06 4.35 -1.29615

-- 0.17178 0.05745 --

q per injection (µcal)
injection volume (µL)

[X]tot prior to injection (ligand conc)
[M]tot prior to injection

Ratio [X]tot/[M]tot 

q per mole ligand injected

Best fit q per mole ligand added

Residual With best 
fit Kd, ∆H
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[M] = 69 µM

# Titrations = 23

Cell volume = 201.9 µL

Injection volume = 1.7 µL

[X]stock = 1.035 mM

DH INJV Xt Mt XMt NDH Fit DY

0.98819 0.5 0 0.069 0.03619 -- 2299.99 --

4.01479 1.7 0.00249 0.06883 0.15988 2281.78 2292.82 -11.04176

4.07614 1.7 0.01092 0.06827 0.28458 2316.65 2276.50 40.14832

3.9874 1.7 0.01927 0.06772 0.41028 2266.21 2247.79 18.41812

3.86433 1.7 0.02756 0.06716 0.53699 2196.27 2191.38 4.88868

3.54838 1.7 0.03577 0.06661 0.66471 2016.70 2063.29 -46.5927

3.021 1.7 0.04392 0.06607 0.79344 1716.96 1739.43 -22.46873

1.96747 1.7 0.052 0.06553 0.92317 1118.20 1096.36 21.83654

0.91076 1.7 0.06 0.065 1.05391 517.62 501.20 16.42658

0.402 1.7 0.06794 0.06447 1.18565 228.47 227.82 0.65576

0.14295 1.7 0.07581 0.06394 1.31841 81.24 120.26 -39.02183

0.02726 1.7 0.08361 0.06342 1.45217 15.50 72.24 -56.74176

0.0026 1.7 0.09134 0.0629 1.58693 1.48 47.53 -46.04968

-0.04201 1.7 0.099 0.06238 1.7227 -23.88 33.35 -57.22539

-0.00329 1.7 0.10659 0.06187 1.85948 -1.87 24.51 -26.37896

-0.04848 1.7 0.11411 0.06137 1.99727 -27.55 18.65 -46.20145

-0.02632 1.7 0.12156 0.06086 2.13606 -14.96 14.57 -29.5273

-0.03007 1.7 0.12894 0.06037 2.27586 -17.09 11.61 -28.69484

-0.01286 1.7 0.13626 0.05987 2.41667 -7.31 9.39 -16.69765

0.01504 1.7 0.1435 0.05938 2.55849 8.55 7.68 0.86992

0.02926 1.7 0.15067 0.05889 2.70131 16.63 6.33 10.29665

-0.02331 1.7 0.15778 0.05841 2.84513 -13.25 5.24 -18.49181

0.00538 1.7 0.16481 0.05793 2.98997 3.06 4.35 -1.29615

-- 0.17178 0.05745 --

q per injection (µcal)
injection volume (µL)

[X]tot prior to injection (ligand conc)
[M]tot prior to injection

Ratio [X]tot/[M]tot 

q per mole ligand injected

Best fit q per mole ligand added

Residual = NDH - Fit
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[M] = 69 µM

# Titrations = 23

Cell volume = 201.9 µL

Injection volume = 1.7 µL

[X]stock = 1.035 mM

DH INJV Xt Mt XMt NDH Fit DY

0.98819 0.5 0 0.069 0.03619 -- 2299.99 --

4.01479 1.7 0.00249 0.06883 0.15988 2281.78 2292.82 -11.04176

4.07614 1.7 0.01092 0.06827 0.28458 2316.65 2276.50 40.14832

3.9874 1.7 0.01927 0.06772 0.41028 2266.21 2247.79 18.41812

3.86433 1.7 0.02756 0.06716 0.53699 2196.27 2191.38 4.88868

3.54838 1.7 0.03577 0.06661 0.66471 2016.70 2063.29 -46.5927

3.021 1.7 0.04392 0.06607 0.79344 1716.96 1739.43 -22.46873

1.96747 1.7 0.052 0.06553 0.92317 1118.20 1096.36 21.83654

0.91076 1.7 0.06 0.065 1.05391 517.62 501.20 16.42658

0.402 1.7 0.06794 0.06447 1.18565 228.47 227.82 0.65576

0.14295 1.7 0.07581 0.06394 1.31841 81.24 120.26 -39.02183

0.02726 1.7 0.08361 0.06342 1.45217 15.50 72.24 -56.74176

0.0026 1.7 0.09134 0.0629 1.58693 1.48 47.53 -46.04968

-0.04201 1.7 0.099 0.06238 1.7227 -23.88 33.35 -57.22539

-0.00329 1.7 0.10659 0.06187 1.85948 -1.87 24.51 -26.37896

-0.04848 1.7 0.11411 0.06137 1.99727 -27.55 18.65 -46.20145

-0.02632 1.7 0.12156 0.06086 2.13606 -14.96 14.57 -29.5273

-0.03007 1.7 0.12894 0.06037 2.27586 -17.09 11.61 -28.69484

-0.01286 1.7 0.13626 0.05987 2.41667 -7.31 9.39 -16.69765

0.01504 1.7 0.1435 0.05938 2.55849 8.55 7.68 0.86992

0.02926 1.7 0.15067 0.05889 2.70131 16.63 6.33 10.29665

-0.02331 1.7 0.15778 0.05841 2.84513 -13.25 5.24 -18.49181

0.00538 1.7 0.16481 0.05793 2.98997 3.06 4.35 -1.29615

-- 0.17178 0.05745 --

q per injection (µcal)
injection volume (µL)

[X]tot prior to injection (ligand conc)
[M]tot prior to injection

Ratio [X]tot/[M]tot 

q per mole ligand injected

Best fit q per mole ligand added

Residual

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

1000

2000

XMt =  [X]tot / [M]tot
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[M] = 69 µM

# Titrations = 23

Cell volume = 201.9 µL

Injection volume = 1.7 µL

[X]stock = 1.035 mM

DH INJV Xt Mt XMt NDH Fit DY

0.98819 0.5 0 0.069 0.03619 -- 2299.99 --

4.01479 1.7 0.00249 0.06883 0.15988 2281.78 2292.82 -11.04176

4.07614 1.7 0.01092 0.06827 0.28458 2316.65 2276.50 40.14832

3.9874 1.7 0.01927 0.06772 0.41028 2266.21 2247.79 18.41812

3.86433 1.7 0.02756 0.06716 0.53699 2196.27 2191.38 4.88868

3.54838 1.7 0.03577 0.06661 0.66471 2016.70 2063.29 -46.5927

3.021 1.7 0.04392 0.06607 0.79344 1716.96 1739.43 -22.46873

1.96747 1.7 0.052 0.06553 0.92317 1118.20 1096.36 21.83654

0.91076 1.7 0.06 0.065 1.05391 517.62 501.20 16.42658

0.402 1.7 0.06794 0.06447 1.18565 228.47 227.82 0.65576

0.14295 1.7 0.07581 0.06394 1.31841 81.24 120.26 -39.02183

0.02726 1.7 0.08361 0.06342 1.45217 15.50 72.24 -56.74176

0.0026 1.7 0.09134 0.0629 1.58693 1.48 47.53 -46.04968

-0.04201 1.7 0.099 0.06238 1.7227 -23.88 33.35 -57.22539

-0.00329 1.7 0.10659 0.06187 1.85948 -1.87 24.51 -26.37896

-0.04848 1.7 0.11411 0.06137 1.99727 -27.55 18.65 -46.20145

-0.02632 1.7 0.12156 0.06086 2.13606 -14.96 14.57 -29.5273

-0.03007 1.7 0.12894 0.06037 2.27586 -17.09 11.61 -28.69484

-0.01286 1.7 0.13626 0.05987 2.41667 -7.31 9.39 -16.69765

0.01504 1.7 0.1435 0.05938 2.55849 8.55 7.68 0.86992

0.02926 1.7 0.15067 0.05889 2.70131 16.63 6.33 10.29665

-0.02331 1.7 0.15778 0.05841 2.84513 -13.25 5.24 -18.49181

0.00538 1.7 0.16481 0.05793 2.98997 3.06 4.35 -1.29615

-- 0.17178 0.05745 --

q per injection (µcal)
injection volume (µL)

[X]tot prior to injection (ligand conc)
[M]tot prior to injection

Ratio [X]tot/[M]tot 

q per mole ligand injected

Best fit q per mole ligand added

Residual

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

1000

2000

XMt =  [X]tot / [M]tot
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[M] = 69 µM

# Titrations = 23

Cell volume = 201.9 µL

Injection volume = 1.7 µL

[X]stock = 1.035 mM

DH INJV Xt Mt XMt NDH Fit DY

0.98819 0.5 0 0.069 0.03619 -- 2299.99 --

4.01479 1.7 0.00249 0.06883 0.15988 2281.78 2292.82 -11.04176

4.07614 1.7 0.01092 0.06827 0.28458 2316.65 2276.50 40.14832

3.9874 1.7 0.01927 0.06772 0.41028 2266.21 2247.79 18.41812

3.86433 1.7 0.02756 0.06716 0.53699 2196.27 2191.38 4.88868

3.54838 1.7 0.03577 0.06661 0.66471 2016.70 2063.29 -46.5927

3.021 1.7 0.04392 0.06607 0.79344 1716.96 1739.43 -22.46873

1.96747 1.7 0.052 0.06553 0.92317 1118.20 1096.36 21.83654

0.91076 1.7 0.06 0.065 1.05391 517.62 501.20 16.42658

0.402 1.7 0.06794 0.06447 1.18565 228.47 227.82 0.65576

0.14295 1.7 0.07581 0.06394 1.31841 81.24 120.26 -39.02183

0.02726 1.7 0.08361 0.06342 1.45217 15.50 72.24 -56.74176

0.0026 1.7 0.09134 0.0629 1.58693 1.48 47.53 -46.04968

-0.04201 1.7 0.099 0.06238 1.7227 -23.88 33.35 -57.22539

-0.00329 1.7 0.10659 0.06187 1.85948 -1.87 24.51 -26.37896

-0.04848 1.7 0.11411 0.06137 1.99727 -27.55 18.65 -46.20145

-0.02632 1.7 0.12156 0.06086 2.13606 -14.96 14.57 -29.5273

-0.03007 1.7 0.12894 0.06037 2.27586 -17.09 11.61 -28.69484

-0.01286 1.7 0.13626 0.05987 2.41667 -7.31 9.39 -16.69765

0.01504 1.7 0.1435 0.05938 2.55849 8.55 7.68 0.86992

0.02926 1.7 0.15067 0.05889 2.70131 16.63 6.33 10.29665

-0.02331 1.7 0.15778 0.05841 2.84513 -13.25 5.24 -18.49181

0.00538 1.7 0.16481 0.05793 2.98997 3.06 4.35 -1.29615

-- 0.17178 0.05745 --

q per injection (µcal)
injection volume (µL)

[X]tot prior to injection (ligand conc)
[M]tot prior to injection

Ratio [X]tot/[M]tot 

q per mole ligand injected

Best fit q per mole ligand added

Residual

Sources of error?
Buffer mismatch, etc?

Is this a problem here?

No, but maybe….?
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[M] = 69 µM

# Titrations = 23

Cell volume = 201.9 µL

Injection volume = 1.7 µL

[X]stock = 1.035 mM

DH INJV Xt Mt XMt NDH Fit DY

0.98819 0.5 0 0.069 0.03619 -- 2299.99 --

4.01479 1.7 0.00249 0.06883 0.15988 2281.78 2292.82 -11.04176

4.07614 1.7 0.01092 0.06827 0.28458 2316.65 2276.50 40.14832

3.9874 1.7 0.01927 0.06772 0.41028 2266.21 2247.79 18.41812

3.86433 1.7 0.02756 0.06716 0.53699 2196.27 2191.38 4.88868

3.54838 1.7 0.03577 0.06661 0.66471 2016.70 2063.29 -46.5927

3.021 1.7 0.04392 0.06607 0.79344 1716.96 1739.43 -22.46873

1.96747 1.7 0.052 0.06553 0.92317 1118.20 1096.36 21.83654

0.91076 1.7 0.06 0.065 1.05391 517.62 501.20 16.42658

0.402 1.7 0.06794 0.06447 1.18565 228.47 227.82 0.65576

0.14295 1.7 0.07581 0.06394 1.31841 81.24 120.26 -39.02183

0.02726 1.7 0.08361 0.06342 1.45217 15.50 72.24 -56.74176

0.0026 1.7 0.09134 0.0629 1.58693 1.48 47.53 -46.04968

-0.04201 1.7 0.099 0.06238 1.7227 -23.88 33.35 -57.22539

-0.00329 1.7 0.10659 0.06187 1.85948 -1.87 24.51 -26.37896

-0.04848 1.7 0.11411 0.06137 1.99727 -27.55 18.65 -46.20145

-0.02632 1.7 0.12156 0.06086 2.13606 -14.96 14.57 -29.5273

-0.03007 1.7 0.12894 0.06037 2.27586 -17.09 11.61 -28.69484

-0.01286 1.7 0.13626 0.05987 2.41667 -7.31 9.39 -16.69765

0.01504 1.7 0.1435 0.05938 2.55849 8.55 7.68 0.86992

0.02926 1.7 0.15067 0.05889 2.70131 16.63 6.33 10.29665

-0.02331 1.7 0.15778 0.05841 2.84513 -13.25 5.24 -18.49181

0.00538 1.7 0.16481 0.05793 2.98997 3.06 4.35 -1.29615

-- 0.17178 0.05745 --

q per injection (µcal)
injection volume (µL)

[X]tot prior to injection (ligand conc)
[M]tot prior to injection

Ratio [X]tot/[M]tot 

q per mole ligand injected

Best fit q per mole ligand added

Residual

Sources of error?
Errors in [X]stock

Errors in [M]



ITC

[M] = 69 µM

# Titrations = 23

Cell volume = 201.9 µL

Injection volume = 1.7 µL

[X]stock = 1.035 mM

DH INJV Xt Mt XMt NDH Fit DY

0.98819 0.5 0 0.069 0.03619 -- 2299.99 --

4.01479 1.7 0.00249 0.06883 0.15988 2281.78 2292.82 -11.04176

4.07614 1.7 0.01092 0.06827 0.28458 2316.65 2276.50 40.14832

3.9874 1.7 0.01927 0.06772 0.41028 2266.21 2247.79 18.41812

3.86433 1.7 0.02756 0.06716 0.53699 2196.27 2191.38 4.88868

3.54838 1.7 0.03577 0.06661 0.66471 2016.70 2063.29 -46.5927

3.021 1.7 0.04392 0.06607 0.79344 1716.96 1739.43 -22.46873

1.96747 1.7 0.052 0.06553 0.92317 1118.20 1096.36 21.83654

0.91076 1.7 0.06 0.065 1.05391 517.62 501.20 16.42658

0.402 1.7 0.06794 0.06447 1.18565 228.47 227.82 0.65576

0.14295 1.7 0.07581 0.06394 1.31841 81.24 120.26 -39.02183

0.02726 1.7 0.08361 0.06342 1.45217 15.50 72.24 -56.74176

0.0026 1.7 0.09134 0.0629 1.58693 1.48 47.53 -46.04968

-0.04201 1.7 0.099 0.06238 1.7227 -23.88 33.35 -57.22539

-0.00329 1.7 0.10659 0.06187 1.85948 -1.87 24.51 -26.37896

-0.04848 1.7 0.11411 0.06137 1.99727 -27.55 18.65 -46.20145

-0.02632 1.7 0.12156 0.06086 2.13606 -14.96 14.57 -29.5273

-0.03007 1.7 0.12894 0.06037 2.27586 -17.09 11.61 -28.69484

-0.01286 1.7 0.13626 0.05987 2.41667 -7.31 9.39 -16.69765

0.01504 1.7 0.1435 0.05938 2.55849 8.55 7.68 0.86992

0.02926 1.7 0.15067 0.05889 2.70131 16.63 6.33 10.29665

-0.02331 1.7 0.15778 0.05841 2.84513 -13.25 5.24 -18.49181

0.00538 1.7 0.16481 0.05793 2.98997 3.06 4.35 -1.29615

-- 0.17178 0.05745 --

q per injection (µcal)
injection volume (µL)

[X]tot prior to injection (ligand conc)
[M]tot prior to injection

Ratio [X]tot/[M]tot 

q per mole ligand injected

Best fit q per mole ligand added

Residual

Sources of error?
Injection volume

Random
Systematic

How would that present?

Volume — cumulative

Impacts both x and y

in nonlinear ways



ITC

[M] = 69 µM

# Titrations = 23

Cell volume = 201.9 µL

Injection volume = 1.7 µL

[X]stock = 1.035 mM

K = [MX ]
M[ ] X[ ] =

θ
1−θ( ) X[ ]

X[ ]tot = X[ ]+ MX[ ]= X[ ]+θ M[ ]tot
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[M] = 69 µM

# Titrations = 23

Cell volume = 201.9 µL

Injection volume = 1.7 µL
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[M] = 69 µM

# Titrations = 23

Cell volume = 201.9 µL

Injection volume = 1.7 µL

[X]stock = 1.035 mM

K = [MX ]
M[ ] X[ ] =

θ
1−θ( ) X[ ]

X[ ]tot = X[ ]+ MX[ ]= X[ ]+θ M[ ]tot

K 1−θ( ) X[ ]= θ
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θ 2 −θ 1+ Xtot

Mtot

+ 1
KMtot

+ Xtot

Mtot

⎛
⎝⎜

⎞
⎠⎟
= 0

Q = θ ×Mtot ×V0 ×∆H

Q = Mtot ×V0 ×∆H
2

1+ Xtot

Mtot

+ 1
KMtot

− 1+ Xtot

Mtot

+ 1
KMtot

⎛
⎝⎜

⎞
⎠⎟

2

− 4 Xtot

Mtot

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

∆Q i( ) =Q i( )−Q i −1( )
time (s)

q 
(µ

ca
l/s

)



ITC

[M] = 69 µM

# Titrations = 23

Cell volume = 201.9 µL

Injection volume = 1.7 µL

[X]stock = 1.035 mM

Q = θ ×Mtot ×V0 ×∆H

Q = Mtot ×V0 ×∆H
2

1+ Xtot

Mtot

+ 1
KMtot

− 1+ Xtot

Mtot

+ 1
KMtot

⎛
⎝⎜

⎞
⎠⎟

2

− 4 Xtot

Mtot

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

∆Q i( ) =Q i( )−Q i −1( )

∆Q i( ) =Q i( )+ dVi
V0

Q i( )+Q i −1( )
2

⎡
⎣⎢

⎤
⎦⎥
−Q i −1( )

But remember that there is 
this exclude volume stuff



ITC

“Equation 14 and Equation 15 
can be solved for [X] either in 
closed form or (as done in 
MicroCal ITC Software) 
numerically by using Newton’s 
Method if parameters n1, n2, K1, 
and K2 are assigned. Both θ1 
and θ2 may then be obtained 
from Equation 11 above.”

From the Manual
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ITC
Practical

time (t)

q 
(µ

ca
l/s

)

Baseline subtraction

Over-smoothing



ITC
Enzyme Kinetics

Velocity = Rt =
P

∆H ×V0 [E] = 5.00 µM

[S]stock = 1.035 mM

=
µcal

s
µcal

mol  S( )× Liters( )

Rt =
kcat E[ ]T S[ ]T
S[ ]T +Km

Assuming [S]T>>[E]T

Assuming steady state kinetics

E +S kf

kr
⎯ →⎯← ⎯⎯ ES kcat⎯ →⎯ E + P

V0
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Enzyme Kinetics

Velocity = Rt =
P

∆H ×V0 [E] = 5.00 µM

[S]stock = 1.035 mM

=
µcal

s
µcal

mol  S( )× Liters( )

Rt =
kcat E[ ]T S[ ]T
S[ ]T +Km

Assuming [S]T>>[E]T

Assuming steady state kinetics

time (t)

q 
(µ

ca
l/s

)

steady state

re
ac

tio
n 

co
m

pl
et

esu
bs

tr
at

e

P
E +S kf

kr
⎯ →⎯← ⎯⎯ ES kcat⎯ →⎯ E + P

P dt
0

∞

∫
∆H =

P dt
0

∞

∫
S[ ]0 ×V0

V0

Heat generate in consuming all of S

Assumes no back or background reaction (e.g. hydrolysis)

Then fit Velocity (Rt) vs [S]T as with traditional kinetics
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Enzyme Kinetics

Velocity = Rt =
P

∆H ×V0 [E] = 5.00 µM

[S]stock = 1.035 mM

=
µcal

s
µcal

mol  S( )× Liters( )

Rt =
kcat E[ ]T S[ ]T
S[ ]T +Km

Assuming [S]T>>[E]T

Assuming steady state kinetics

su
bs

tr
at

e

E +S kf

kr
⎯ →⎯← ⎯⎯ ES kcat⎯ →⎯ E + P

V0

time (t)

q 
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l/s

)
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at

e

su
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tr
at

e

Assumes build up of product 
does not slow reaction



NanoDrop
(routine UV-Vis more generally)
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Let’s simulate a spectrum in R

Normal (Gaussian) distribution

y = dnorm(x, mean, sd)
x = seq(240,500, by=1)

plot(x, y, type="l") Inc
or

re
ct 

- w
hy

?

y = dnorm(x, 260, 10)

Abs = nnn
Conc = xxx
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Let’s simulate a spectrum in R

Normal (Gaussian) distribution

y = dnorm(x, mean, sd)
x = seq(240,500, by=1)

plot(x, y, type="l") Inc
or

re
ct 

- w
hy

?

y = dnorm(x, 260, 10)

Abs = nnn
Conc = xxx
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NanoDrop
(routine UV-Vis more generally)
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Let’s simulate a spectrum in R

Normal (Gaussian) distribution
x = seq(240,500, by=1)

plot(x, spectrm(x, 260, 20, 10), type="l")
spectrm <- function(x, lmax, lwid, inten) ( inten * dnorm(1/x, 1/lmax, sd=(1/lmax - 1/(lmax+lwid))) )	

Not
 qu

ite
 - 

why
?

hypothesis: scattering!
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(routine UV-Vis more generally)
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Let’s simulate a spectrum in R

Normal (Gaussian) distribution
x = seq(240,500, by=1)

spectrm <- function(x, lmax, lwid, inten) ( inten * dnorm(1/x, 1/lmax, sd=(1/lmax - 1/(lmax+lwid))) )	

scattr <- function(x,intenSc) (intenSc * mean(x)^4 / x^4)
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NanoDrop
(routine UV-Vis more generally)

Thermo Scientific NanoDrop Spectrophotometers use a 
bichromatic absorbance correction for nucleic acid and 
protein A280 measurements. This type of correction is 
performed to offset the effect of instrument noise and light 
scattering particulates on low concentration nucleic acid and 
protein sample measurements. Due to the lack of absorbance 
by nucleic acids or proteins at higher UV wavelengths, it has 
been our general observation that any UV wavelength at or 
above 320 nm can be utilized for this bichromatic correction. 

The software for the NanoDrop 1000 and 
NanoDrop 8000 Spectrophotometers 
automatically subtracts the 340 nm absorbance 
from the entire spectrum. The NanoDrop 
2000/2000c software allows for the selection of 
any wavelength for this bichromatic correction 
(the default setting is 340 nm) or for de-selection 
of this function. The NanoDrop Lite subtracts the 
absorbance at 365 nm from the 260 nm and 280 
nm wavelength absorbance, respectively. 


This is good!

T037 – TECHNICAL BULLETIN

NanoDrop Spectrophotometers 
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NanoDrop
(routine UV-Vis more generally)

Thermo Scientific NanoDrop Spectrophotometers use a 
bichromatic absorbance correction for nucleic acid and 
protein A280 measurements. This type of correction is 
performed to offset the effect of instrument noise and light 
scattering particulates on low concentration nucleic acid and 
protein sample measurements. Due to the lack of absorbance 
by nucleic acids or proteins at higher UV wavelengths, it has 
been our general observation that any UV wavelength at or 
above 320 nm can be utilized for this bichromatic correction. 

The software for the NanoDrop 1000 and 
NanoDrop 8000 Spectrophotometers 
automatically subtracts the 340 nm absorbance 
from the entire spectrum. The NanoDrop 
2000/2000c software allows for the selection of 
any wavelength for this bichromatic correction 
(the default setting is 340 nm) or for de-selection 
of this function. The NanoDrop Lite subtracts the 
absorbance at 365 nm from the 260 nm and 280 
nm wavelength absorbance, respectively. 


This is not so good…

This is good!
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NanoDrop
(routine UV-Vis more generally)

Thermo Scientific NanoDrop Spectrophotometers use a 
bichromatic absorbance correction for nucleic acid and 
protein A280 measurements. This type of correction is 
performed to offset the effect of instrument noise and light 
scattering particulates on low concentration nucleic acid and 
protein sample measurements. Due to the lack of absorbance 
by nucleic acids or proteins at higher UV wavelengths, it has 
been our general observation that any UV wavelength at or 
above 320 nm can be utilized for this bichromatic correction. 

The software for the NanoDrop 1000 and 
NanoDrop 8000 Spectrophotometers 
automatically subtracts the 340 nm absorbance 
from the entire spectrum. The NanoDrop 
2000/2000c software allows for the selection of 
any wavelength for this bichromatic correction 
(the default setting is 340 nm) or for de-selection 
of this function. The NanoDrop Lite subtracts the 
absorbance at 365 nm from the 260 nm and 280 
nm wavelength absorbance, respectively. 


Pedestal measurements made using NanoDropTM 
spectrophotometers utilize shorter pathlengths than the 
classical 10 mm pathlength associated with most cuvettes, 
enabling measurements of highly concentrated samples. 
These concentrated samples have very high A260 nm or 
A280 nm values and therefore the normalization 
wavelength for the NanoDrop 1000, 2000/2000c and 8000 
is positioned at 340 nm, an additional 20 nm further than 
the customary 320 nm. Similarly, the normalization 
wavelength for the NanoDrop Lite is positioned at 365 nm.

T037 – TECHNICAL BULLETIN

NanoDrop Spectrophotometers 



250 300 350 400 450 500

0
50

00
15

00
0

wavelength (nm)
Ab

so
rp

tio
n

250 300 350 400 450 500

0
50

00
15

00
0

wavelength (nm)

Ab
so

rp
tio

n



Fitting Spectra

516

Y = Ae
−
x−µ( )2
2σ 2



Spectral Deconvolution

149.81 ± 0.06
∆ = 3.33 ± 0.06
A = 0.89 ± 0.01

180.84 ± 0.17
∆ = 14.27 ± 0.08
A = 0.895 ± 0.007

200.2 ± 0.08
∆ = 3.0 ± 0.1
A = 0.56 ± 0.02

230.0 ± 0.1
∆ = 4.2 ± 0.1
A = 0.46 ± 0.01

f x( ) = A1e
−
x− x1( )2

2∆1
2

+ A2e
−
x− x2( )2

2∆ 2
2

+ A3e
−
x− x3( )2

2∆ 3
2

+ A4e
−
x− x4( )2

2∆ 4
2

+ mx + b
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UV-Vis    Proteins
(routine UV-Vis more generally)

spectraScattPlot(x, list(c(212,30,12), c(260, 7,2), c(272, 8,3), c(287,14,3)), 0)

287 nm, σ=14 nm (Tyr?)

272 nm, σ=8 nm
260 nm, σ=7 nm

Example only
not intended to be real…
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UV-Vis    Proteins
(routine UV-Vis more generally)

spectraScattPlot(x, list(c(212,30,12), c(260, 7,2), c(272, 8,3), c(287,14,3)), 0)

spectraScattPlot(x, list(c(212,30,12), c(260, 7,2), c(272, 8,3), c(287,14,3)), 2000)

287 nm, σ=14 nm (Tyr?)

272 nm, σ=8 nm
260 nm, σ=7 nm

Example only
not intended to be real…



Oligonucleotide Extinction Coefficients

By how much does sequence composition affect extinction 
coefficient?

5’-AGGCACGGTCACGTGGCAC-3’

Would you believe that the extinction coefficient for a 
sequence as short as 6 bases can vary just by arranging the 
bases in a different order? Additionally, base composition can 
lead to significant differences in the extinction coefficient. See 
Table 1 for examples.

For these reasons, IDT calculates the extinction coefficient for 
every oligo synthesized using a nearest neighbor method. This 
value is then used to measure the yield for each 
oligonucleotide produced.

Greatest accuracy is therefore achieved when the exact value 
of ε260 is calculated for each oligo. Further, it is necessary to 
take into account the presence of oligo modifications, such as 
fluorescent dyes, which may have significant absorbance at 
260 nm.

Nearest neighbor values for ε260 of dNTPs are:

https://www.idtdna.com/pages/tools

ε260 - not the absorption maximum for each!



Total Internal Reflectance
Molecular Cell 24, 317–329, November 3, 2006

Single-Molecule Biology:
What Is It and How Does It Work?

Jordanka Zlatanova1, and 
Kensal van Holde

In TIR, the excitation light is directed toward an interface between two media of different refractive indices (i.e., from an optically 
denser medium, such as a glass slide, into a less-dense medium, such as water) (Axelrod, 2001). The incident angle of the beam is set 
larger than a certain critical angle, defined by the properties of the two media; all the light is reflected off the glass and does not 
penetrate into the solution (Figure 1A). How-ever, an electromagnetic field that oscillates with the same frequency as the incident 
light does form in the less-dense medium (the water on the other side). Because this electromagnetic field (also called evanescent 
field or wave) decays exponentially from the glass surface, it is capable of exciting fluorophores only in a very small volume close to 
the surface, thus effectively preventing out-of-focus fluorescence background. The excitation light itself is cleanly removed from the 
observation chamber, reducing the background even further.
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Single-Molecule Biology:
What Is It and How Does It Work?

Jordanka Zlatanova1, and 
Kensal van Holde

In TIR, the excitation light is directed toward an interface between two media of different refractive indices (i.e., from an optically 
denser medium, such as a glass slide, into a less-dense medium, such as water) (Axelrod, 2001). The incident angle of the beam is set 
larger than a certain critical angle, defined by the properties of the two media; all the light is reflected off the glass and does not 
penetrate into the solution (Figure 1A). How-ever, an electromagnetic field that oscillates with the same frequency as the incident 
light does form in the less-dense medium (the water on the other side). Because this electromagnetic field (also called evanescent 
field or wave) decays exponentially from the glass surface, it is capable of exciting fluorophores only in a very small volume close to 
the surface, thus effectively preventing out-of-focus fluorescence background. The excitation light itself is cleanly removed from the 
observation chamber, reducing the background even further.
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Surface Plasmon Resonance

523

As before, the E field penetrates a short (tens of nm) distance into a medium of a lower refractive index creating 
an exponentially attenuated evanescent wave.



Surface Plasmon Resonance

523

Surface Plasmons - collective, quantized oscillations of conduction band electrons in a metal

Thin metal (Au) layer

Electrons in the Au layer show a resonant 
absorption at a specific frequency

As before, the E field penetrates a short (tens of nm) distance into a medium of a lower refractive index creating 
an exponentially attenuated evanescent wave.

dip angle

Resonant absorption

If the quartz (glass) is coated with a thin layer of metal (gold), and light is monochromatic and p-polarized, the 
intensity of the reflected light is reduced at a specific incident angle producing a sharp shadow (called surface 
plasmon resonance) due to the resonance energy transfer between evanescent wave and surface plasmons.

The resonance conditions are influenced by the material adsorbed onto the thin metal film. A linear relationship 
exists between the resonance energy and the mass concentration of biochemically relevant molecules such as 
proteins, sugars and DNA.



Surface Plasmon Resonance

524

Have wave/particle duality like photons, electrons

dip angle

Electrons in the Au layer show a resonant 
absorption at a specific frequency

Dextran layer

Your bound protein

Thin metal (Au) layer

The SPR signal which is expressed 
in resonance units is therefore a 
measure of mass concentration at 
the sensor chip surface. 

detected

not detected

Surface Plasmons - collective, quantized oscillations of conduction band electrons in a metal
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dip angle

Electrons in the Au layer show a resonant 
absorption at a specific frequency

Dextran layer

Your bound protein

Thin metal (Au) layer

dip angle

Time

detected

not detected

Have wave/particle duality like photons, electrons
Surface Plasmons - collective, quantized oscillations of conduction band electrons in a metal



Surface Plasmon Resonance

526

dip angle

Electrons in the Au layer show a resonant 
absorption at a specific frequency

Dextran layer

Your bound protein

Thin metal (Au) layer

dip angle

Time

Proportional to 
mass boundbinding

dip angle

Time

Yt = Y∞ −Y0( ) 1− e−kon' t( ) +Y0
kon
' = kon L[ ]

detected

not detected

Have wave/particle duality like photons, electrons
Surface Plasmons - collective, quantized oscillations of conduction band electrons in a metal
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dip angle

Electrons in the Au layer show a resonant 
absorption at a specific frequency

Dextran layer

Your bound protein

Thin metal (Au) layer

dissociationdip angle

Time

binding

dip angle

Time

Yt = Y∞e
−kdiss t +Y0

Yt = Y∞ −Y0( ) 1− e−kon' t( ) +Y0
kon
' = kon L[ ]

detected

not detected

Have wave/particle duality like photons, electrons
Surface Plasmons - collective, quantized oscillations of conduction band electrons in a metal



Surface Plasmon Resonance

Yt = Y∞e
−kdiss t +Y0

Yt = Y∞ −Y0( ) 1− e−kon' t( ) +Y0
kon
' = kon L[ ]

Kequilib =
kon
kdiss



Surface Plasmon Resonance

detected

Have wave/particle duality like photons, electrons
Surface Plasmons - collective, quantized oscillations of conduction band electrons in a metal
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TimeTime

Yt = Y∞e
−kdiss t +Y0

Yt = Y∞ −Y0( ) 1− e−kon' t( ) +Y0
kon
' = kon L[ ]

detected

Have wave/particle duality like photons, electrons
Surface Plasmons - collective, quantized oscillations of conduction band electrons in a metal
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dip angle

Time

binding

dip angle

Time

Yt = Y∞e
−kdiss t +Y0

Yt = Y∞ −Y0( ) 1− e−kon' t( ) +Y0
kon
' = kon L[ ]

detected

Have wave/particle duality like photons, electrons
Surface Plasmons - collective, quantized oscillations of conduction band electrons in a metal

x µM



Surface Plasmon Resonance
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dip angle

Time

binding

dip angle

Time

Yt = Y∞e
−kdiss t +Y0

Yt = Y∞ −Y0( ) 1− e−kon' t( ) +Y0
kon
' = kon L[ ]

detected

Have wave/particle duality like photons, electrons
Surface Plasmons - collective, quantized oscillations of conduction band electrons in a metal

x µM

x - δ µM
(a
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If diffusion of ligand is much faster than binding, 
then this is not a problem, but….

The Mass Transport Kinetics problem



Surface Plasmon Resonance
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dip angle

Time

binding

dip angle

Time

detected

x µM

Advantages:
measures Kd,  kon and koff (in principle)



Surface Plasmon Resonance

533

dip angle

Time

binding

dip angle

Time

detected

x µM

Advantages:
measures Kd,  kon and koff (in principle)
fluidics allows high throughput (in principle)
label free / works in complex environments

Disadvantages:
surface immobilization
mass transport issues



Surface Plasmon Resonance
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TimeTime

https://www.cytivalifesciences.com/en/us/solutions/protein-research/
knowledge-center/surface-plasmon-resonance/surface-plasmon-resonance

https://www.cytivalifesciences.com/en/us/solutions/protein-research/knowledge-center/surface-plasmon-resonance/surface-plasmon-resonance


Competing Technologies

535

Sartorius / BioForte

Bio-Layer Interferometry

Cytiva

Surface Plasmon Resonance

Carterra “Proprietary HT-SPR™ technology”

hv

targeting monoclonal antibody screening…

A high-resolution CCD camera images the entire chip surface simultaneously, enabling up to 384 
real-time interactions to be monitored in parallel with local referencing via neighboring interspots.

Measures change in refractive index at the surface

Complete kinetic data processing and analysis can be automated, with referencing, zeroing, cropping, 
blank subtraction, and kinetic model fitting all executed as a single operation for up to 1152 samples 
per unattended run.



April 13, 2021

Recap / Revisit

Thermophoresis
but first…



Surface Plasmon Resonance - recap
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dip angle

Time

binding

dip angle

Time

Yt = Y∞e
−kdiss t +Y0

Yt = Y∞ −Y0( ) 1− e−kon' t( ) +Y0
kon
' = kon L[ ]

detected

Have wave/particle duality like photons, electrons
Surface Plasmons - collective, quantized oscillations of conduction band electrons in a metal

x µM
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dip angle

Time

binding

dip angle

Time

Yt = Y∞e
−kdiss t +Y0

Yt = Y∞ −Y0( ) 1− e−kon' t( ) +Y0
kon
' = kon L[ ]

detected

Have wave/particle duality like photons, electrons
Surface Plasmons - collective, quantized oscillations of conduction band electrons in a metal

x µM

x - δ µM
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 a

 g
ra

di
en

t)

If diffusion of ligand is much faster than binding, 
then this is not a problem, but….

The Mass Transport Kinetics problem



Competing Technologies

538

Sartorius / BioForte

Bio-Layer Interferometry

Not a flow system, so not subject to mass transfer issues
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Sartorius / BioForte

Bio-Layer Interferometry

White light incident/reflected, but some 
wavelengths shifted on reflection. Shift is 

proportional to thickness of perturbing layer

reference layer 
reflection

sample layer 
reflection

Not a flow system, so not subject to mass transfer issues

The well plate was on a rapid shaker, why?



Competing Technologies

538

Sartorius / BioForte

Bio-Layer Interferometry

White light incident/reflected, but some 
wavelengths shifted on reflection. Shift is 

proportional to thickness of perturbing layer

reference layer 
reflection

sample layer 
reflection

https://www.youtube.com/watch?v=Jv0CVIgaZ9s

Not a flow system, so not subject to mass transfer issues

The well plate was on a rapid shaker, why?

How would the fluidics SPR experimenter do the same?

And of course, this is 
immobilization on a 
surface, which should 
always raise concerns

https://www.youtube.com/watch?v=Jv0CVIgaZ9s


Thermophoresis

April 13, 2021



Aerosol Thermophoresis
… not for biology …

N2

N2

N2

N2

N2
N2

all are in motion, 
described by kinetic 

theory of gases



Aerosol Thermophoresis
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element



Aerosol Thermophoresis
… not for biology …

N2

N2

N2

N2

N2
N2

Hotter - more kinetic energy

Cool - less kinetic energy

diffuse faster

diffuse more slowly

Net transport away

heating 
element



Aerosol Thermophoresis
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Net transport awayheating 
element

Diffusion in all directions 
away from the heat source



Aerosol Thermophoresis

N2

N2

X
N2

N2

N2

Net transport awayheating 
element

N2

N2
N2

N2

N2

N2

N2

N2

The phenomenon is observed at the scale of one millimeter or less. An example that may be observed by the naked eye with 
good lighting is when the hot rod of an electric heater is surrounded by tobacco smoke: the smoke goes away from the 
immediate vicinity of the hot rod. As the small particles of air nearest the hot rod are heated, they create a fast flow away from 
the rod, down the temperature gradient. They have acquired higher kinetic energy with their higher temperature. When they 
collide with the large, slower-moving particles of the tobacco smoke they push the latter away from the rod. The force that has 
pushed the smoke particles away from the rod is an example of a thermophoretic force.

N2

N2

N2

N2

N2



Microscale Thermophoresis

X
Net transport awayheating 

element

H2O
H2O

H2O

H2O

H2O
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Net transport 
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Microscale Thermophoresis

heating 
element

H2O
H2O

H2O

H2O

H2O

H2O

H2O

H2O
H2O

H2O
H2O

Net transport 
away

collisions

temperature gradient

H2O
H2O

H2O



Microscale Thermophoresis

H2O
H2O

H2O

H2O

H2O

H2O

H2O

H2O
H2O

H2O
H2O

Net transport 
away

collisions

temperature gradient

H2O
H2O

H2O

Fluorescence Excitation
e.g., 420 nm

Fluorescence Emission
e.g., 503 nm

Laser heating
1480 nm ∆T ≈ 2-6 °C

(local)

glass capillary



Microscale Thermophoresis
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glass capillary



Microscale Thermophoresis

Ligand binding at 
equilibrium

Kd, Ptot, Ltot

Fluorescence Excitation
e.g., 420 nm

Fluorescence Emission
e.g., 503 nm

glass capillary



Microscale Thermophoresis

temperature gradient

Fluorescence Excitation
e.g., 420 nm

Fluorescence Emission
e.g., 503 nm

Pulsed Laser heating
1480 nm

glass capillary



Microscale Thermophoresis

temperature gradient

Fluorescence Excitation
e.g., 420 nm

Fluorescence Emission
e.g., 503 nm

[Ltot]3



Microscale Thermophoresis

temperature gradient

Fluorescence Excitation
e.g., 420 nm

Fluorescence Emission
e.g., 503 nm

Pulsed Laser heating
1480 nm

[Ltot]3



Microscale Thermophoresis

∆F(Ltot)

[Ltot]1

[Ltot]2
[Ltot]3[Ltot]4

Fnorm = Fhot
Fcold

= 1− f( )Fnormunbound + f( )Fnormbound

f = PL[ ]
P[ ]tot

Kd, Ptot, Ltot



Microscale Thermophoresis

H2O

H2O

H2O

H2O

H2O

H2O

H2O

H2O
H2O

H2O
H2ONet transport 

away

collisions

H2O
H2O

H2O

H2O

H2O

H2O

H2OH2O

H2O

H2O

H2O

Net transport 
away

collisions

H2OH2O

H2O

Steady state position (and ∆F) depends on “size”

Under constant buffer conditions, thermophoresis probes 
the size, charge, and solvation entropy of the molecules.

complicated

Ligand does not necessarily have to be large relative to the macromolecule

Binding may close an open cleft

Binding may change solvation shell



Microscale Thermophoresis
Fluorescence

F

F

Strengths
fluorescence can be highly sensitive

can be in a complex mixture

even cell lysate!

(laser excitation!)

(measure Kd’s at 
the low pM level)



Microscale Thermophoresis
Fluorescence

F

F

Strengths
fluorescence can be highly sensitive

can be in a complex mixture

even cell lysate!

uses very small volumes

(laser excitation!)

50 µm
<1 nL (!) (but realistically more, since we can’t mix at that level!)

(measure Kd’s at 
the low pM level)



Microscale Thermophoresis
Label-free Fluorescence

F

F

Use intrinsic protein fluorescence

2-3 Trp residues - detect down to 100 nM

fluorophore details don't matter

Trp, Tyr, Phe…



Microscale Thermophoresis
Fluorescence

F

F

Strengths
ligand need not be large

that change can be in either direction

“negative” thermophoresis

may induce change in the protein

Caveats
The effects of two (or more) binding sites is not additive

extreme example: one positive, one negative thermophoresis

example?

shape/hydratio
n



Microscale Thermophoresis

The effects of two (or more) binding sites is not additive
extreme example: one positive, one negative thermophoresis

SSB: a homotetramer
   - cooperatively binds dT70 oligo

Titration at high concentrations



Microscale Thermophoresis

The effects of two (or more) binding sites is not additive
extreme example: one positive, one negative thermophoresis

Stoichiometry 1:1

SSB: a homotetramer
   - cooperatively binds dT70 oligo

at 17.5 nM SSB,  each SSB has two 35mers bound

adding more SSB,  some 35mers bind instead to 
new/extra SSB

Titration at high concentrations

at 30 nM SSB, 35mers are distributed 1:1

Stoichiometry 2:1



Microscale Thermophoresis
But wait…

Time (s)
Fl
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ce

Fluorophore
T-dependence

Thermophoresis

Laser 
On

What if the fluorophore shows
environment-dependent

temperature dependence?

Will reflect the population-
weighted average

Then we can use this as a 
separate measure of binding! 

same

different (T-jump)



Microscale Thermophoresis

SSB: a homotetramer
   - cooperatively binds dT70 oligo

Two separate measures of binding!
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(T-jump)



Microscale Thermophoresis

SSB: a homotetramer
   - cooperatively binds dT70 oligo

Two separate measures of binding!

Time (s)
Fl

uo
re

sc
en

ce

Fluorophore
T-dependence

Thermophoresis

Laser 
Off

Laser 
On

Binding of fluorphore-DNA to the 
protein changes the environment 
of the fluorophore, imparting a 
different temperature dependence

Can use this to separately assess 
binding

(T-jump)



Microscale Thermophoresis
Kinetics

Yes, but…

Caveats

What else contributes 
to kinetics?

complications?

Time (s)

Fl
uo

re
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ce

Fluorophore 
T-dependence

Thermophoresis

Laser 
Off

Laser 
On



When laser light impinges on a macromolecule, the oscillating electric field of the light 
induces an oscillating dipole within it. This oscillating dipole will re-radiate light, much 
like the antenna for a radio station sends out radio waves. The intensity of the radiated 
light depends on the magnitude of the dipole induced in the macromolecule. The more 
polarizable the macromolecule, the larger the induced dipole, and hence, the greater 
the intensity of the scattered light.

https://www.wyatt.com/library/theory/understanding-multi-angle-static-light-scattering.html

“Molecule” = your favorite molecule

“Molecule” = plus all of the solvent molecules (including water)

Therefore, must know your molecule’s polarizability 
relative to the surrounding medium.

∂n
∂ C[ ]

n = refractive index of entire solution

[C] = concentration of your protein

Multi-Angle Light Scattering - recap

https://www.wyatt.com/library/theory/understanding-multi-angle-static-light-scattering.html


θ
r

DetectorReference 
Detector

laser
sample

NA = 6.022 · 1023 mol−1 λ = wavelength of laser lightC = weight concentration of solute (g/mL)

refractive index of the solvent in the absence of solute

change in refractive index of the solvent vs weight concentration of solute
= 0.185 mL/g for proteins (in water) 

A2 (second virial coefficient) is a measure of non-ideality - a measure of the 
interaction forces between dissolved particles:  If A2 is positive, the 
interparticle forces are repulsive. If it is negative the forces are attractive.

molar mass (molecular weight) of solute (g/mol)

correction factor that considers the SHAPE of the solute

Multi-Angle Light Scattering - recap



“MALS”

https://www.wyatt.com/library/theory/understanding-multi-angle-static-light-scattering.html

When there are many macromolecules in 
solution, each macromolecule scatters light via 
the aforementioned induced dipole mechanism. 
Hence, the intensity of the scattered light is 
proportional to the concentration of the 
macromolecules in solution; twice as many 
molecules scatter twice as much light.

The intensity of light scattered 
by a molecule, measured by 
means of a DAWN HELEOS II 
multi-angle light scattering 
(MALS) detector, is directly 
proportional to the molar mass.

Multi-Angle Light Scattering - recap

https://www.wyatt.com/library/theory/understanding-multi-angle-static-light-scattering.html
https://www.wyatt.com/products/instruments/dawn-heleos-ii-multi-angle-light-scattering-detector.html


MALS - Multi-Angle Light Scattering

https://www.wyatt.com/library/theory/understanding-multi-angle-static-light-scattering.html

Macromolecules much smaller than the wavelength of the incident light can be treated as 
though they were essentially point scatterers. For such very small molecules, the light 
scattered into the perpendicular plane is independent of scattering angle. It is the same at 
every scattering angle – the macromolecule scatters light isotropically.

Multi-Angle Light Scattering - recap

https://www.wyatt.com/library/theory/understanding-multi-angle-static-light-scattering.html


θ
r

DetectorReference 
Detector

laser
sample

EM of the incident light induces an oscillation in the electron cloud, with the same frequency as the incident light

The oscillating electron cloud (dipole) then generates EM (of the same frequency)

Multi-Angle Light Scattering - recap



SEC-MALS

MALS - Multi-Angle Light Scattering

https://www.wyatt.com/library/theory/understanding-multi-angle-static-light-scattering.html

Light scattered from different parts of the 
macromolecule reach the detector with 
different phases, leading to the destructive or 
constructive interference.

Assuming a specific conformation (e.g., random coil, sphere, or rod), the rms 
radius can be related to its geometrical dimensions.

Angularly dependent 
phase shift

The net light intensity is reduced relative to 
light scattered in the forward direction, varying 
with angle.

- root mean square (rms) radius, aka "radius of gyration," rg or Rg

The angular dependence of the scattered light 
reflects the (geometrical) size of the molecule

- a measure of the molecule's size weighted by the mass 
distribution about its center of mass.

Refractive index

https://www.wyatt.com/library/theory/understanding-multi-angle-static-light-scattering.html


SEC-MALS

MALS - Multi-Angle Light Scattering

https://www.wyatt.com/library/theory/understanding-multi-angle-static-light-scattering.html

Light scattered from different parts of the 
macromolecule reach the detector with 
different phases, leading to the destructive or 
constructive interference.

Assuming a specific conformation (e.g., random coil, sphere, or rod), the rms 
radius can be related to its geometrical dimensions.

Angularly dependent 
phase shift

The net light intensity is reduced relative to 
light scattered in the forward direction, varying 
with angle.

- root mean square (rms) radius, aka "radius of gyration," rg or Rg

The angular dependence of the scattered light 
reflects the (geometrical) size of the molecule

- a measure of the molecule's size weighted by the mass 
distribution about its center of mass.

Refractive index

But assumes a 
uniform solution 

(one protein type)

https://www.wyatt.com/library/theory/understanding-multi-angle-static-light-scattering.html


SEC-MALS
SEC - Size Exclusion Chromatography

HPLC
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SEC - Size Exclusion Chromatography

HPLC

Time

Assumptions?



SEC-MALS
SEC - Size Exclusion Chromatography

HPLC

Time Time

Assumptions?



SEC-MALS
SEC - Size Exclusion Chromatography

HPLC

Smaller ProteinsLarger Proteins

Elution time

M
ol

ar
 m

as
s

Size standards
Concerns

choose proper column (G25, G50…)
ensure protein does not “stick”
assumes globular (or…) protein



SEC-MALS
SEC - Size Exclusion Chromatography

MALS - Multi-Angle Light Scattering

HPLC

A sample containing a broad distribution of molecular masses may be separated by SEC or GPC, 
and light scattering data acquired at each elution volume to determine molar mass Mw and rg. The 
measured rms radius may be plotted against the correspondingly measured molar mass to 
determine the sample's conformation.



SEC-MALS

…bring your own column

SEC - Size Exclusion Chromatography

Wyatt Dawn Heleos II
MALS - Multi-Angle Light Scattering

Wyatt Optilab T-rEX
dRI - Differential Refractive Index Detector

Determine molar masses from 200 Da to 1GDa and radii from 10-500 nm
Temperature control -15°C to 150°C

Measures protein concentration by refractive index
Measures solvent absolute refractive index (required for MALS analysis)
Temperature control 4°C to 65°C

HPLC

Elution time

M
ol

ar
 m

as
s

Size standards

at UMass



Malvern Zetasizer ZSP - dynamic light scattering (DLS)

• Dynamic Light Scattering is used to measure particle 
and molecule size. DLS measures the diffusion of 
particles moving under Brownian motion, and converts 
this to size and a size distribution using the Stokes-
Einstein relationship.

• Measurement of size as a function of concentration 
enables the calculation of kD, the DLS interaction 
parameter.

• Laser Doppler Micro-electrophoresis is used to measure 
zeta potential. An electric field is applied to a solution of 
molecules or a dispersion of particles, which then move 
with a velocity related to their zeta potential. This 
velocity is measured using a patented laser 
interferometric technique called M3-PALS (Phase 
analysis Light Scattering). This enables the calculation 
of electrophoretic mobility and from this the zeta 
potential and zeta potential distribution.This technique is 
very demanding on the sensitivity and stability of the 
whole system, and requires that every element of the 
design is optimized to ensure accuracy and 
repeatability.

• Static Light Scattering is used to determine 
the molecular weight of proteins and 
polymers. The scattering intensity of a 
number of concentrations of the sample is 
measured, and used to construct a Debye 
plot. From this the weight average 
molecular weight and second virial 
coefficient can be calculated, which 
provides a measure of protein solubility.



Static Dynamic Light Scattering
Malvern Zetasizer ZSP - dynamic light scattering (DLS) system

Dynamic Light Scattering is used to measure particle and molecule size. DLS measures the 
diffusion of particles moving under Brownian motion, and converts this to size and a size 
distribution using the Stokes-Einstein relationship.

Measurement of size as a function of concentration enables the calculation of kD, the DLS 
interaction parameter.

The Microrheology option uses the DLS measurement of tracer particles to probe the structure 
of dilute polymer and protein solutions.

Laser Doppler Micro-electrophoresis is used to measure zeta potential. An electric field is 
applied to a solution of molecules or a dispersion of particles, which then move with a velocity 
related to their zeta potential. This velocity is measured using a patented laser interferometric 
technique called M3-PALS (Phase analysis Light Scattering). This enables the calculation of 
electrophoretic mobility and from this the zeta potential and zeta potential distribution.

Static Light Scattering is used to determine the molecular weight of proteins and polymers. The 
scattering intensity of a number of concentrations of the sample is measured, and used to 
construct a Debye plot. From this the weight average molecular weight and second virial 
coefficient can be calculated, which provides a measure of protein solubility.



Static Dynamic Light Scattering
Malvern Zetasizer ZSP - dynamic light scattering (DLS) system

Dynamic Light Scattering measures the diffusion of particles moving 
under Brownian motion, and converts this to size and a size distribution 
using the Stokes-Einstein relationship.

As light scatters from the moving macromolecules, this motion imparts 
a randomness to the phase of the scattered light, such that when the 
scattered light from two or more particles is added together, there will 
be a changing destructive or constructive interference. This leads to 
time-dependent fluctuations in the intensity of the scattered light.

Time-dependent fluctuations in the scattered light are measured by a fast photon 
counter. The fluctuations are directly related to the rate of diffusion of the molecule 
through the solvent, which is related in turn to the particles' hydrodynamic radii

rh =
kT
6πηDradius

hydrodynamic diffusion 
constant

solvent 
viscosity

Stokes-Einstein



Static Dynamic Light Scattering
Malvern Zetasizer ZSP - dynamic light scattering (DLS) system

rh =
kT
6πηDradius

hydrodynamic diffusion 
constant

solvent 
viscosity

Stokes-Einstein

Hydrodynamic radius

assumes everything 
is a sphere

bigger than the 
actual molecule

hydration 
layer



Static Dynamic Light Scattering
Malvern Zetasizer ZSP - dynamic light scattering (DLS) system

rh =
kT
6πηDradius

hydrodynamic diffusion 
constant

solvent 
viscosity

Stokes-Einstein

Assumes
• Brownian motion
★ non-interacting billiard balls

• Spherical scatterers
• Proper calibration for viscosity, etc
• Properly dilute solution
• No interference from other scatterers



+–
–

Electrophoretic Light Scattering
Malvern Zetasizer ZSP - dynamic light scattering (DLS) system

aka Laser-Doppler Electrophoresis

actually, this approach uses an alternating pulsed field

θ
r

DetectorReference 
Detector

laser
sample



+–
–

Electrophoretic Light Scattering
Malvern Zetasizer ZSP - dynamic light scattering (DLS) system

aka Laser-Doppler Electrophoresis

actually, this approach uses an alternating pulsed field

θ
r

DetectorReference 
Detector

laser
sample



Zeta potential

6 Lys, 5 Arg, 2 His, 6 Glu, 7 Asp

But 1 Glu is internal and protonated

2 Asp are internally salt bridged with 
2 Lys

1 His is protonated, on the surface

There’s a bound sulfate, forming a 
salt bridge with a Arg

Everything else is on the surface

OK, now what’s the net charge of this protein?



Zeta potential

6 Lys, 5 Arg, 2 His, 6 Glu, 7 Asp

But 1 Glu is internal and protonated

2 Asp are internally salt bridged with 
2 Lys

1 His is protonated, on the surface

There’s a bound sulfate, forming a 
salt bridge with a Arg

Everything else is on the surface

But ions in solution are tightly bound 
to some of the surface anions/
cations.

Some more than others…

OK, now what’s the net charge of the hydrated protein?

Highly dependent on

• pH

• ions in solution (concentration and identities)

• bound ligands

• conformational changes

• just about everything…



Surface charge density at the slipping 
(or shear) plane.

The magnitude of the zeta potential 
indicates the degree of electrostatic 
repulsion between adjacent, similarly 
charged particles in a dispersion.

For molecules and particles that are 
small enough, a high zeta potential will 
confer stability, i.e., the solution or 
dispersion will resist aggregation. 

When the potential is small, attractive 
forces may exceed this repulsion and 
the dispersion may break and 
flocculate. 

Zeta potential
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The pH at which the protein has a zeta potential of zero

Zeta potential

Isoelectric Point

+–

pH

(Isoelectric focusing)



Odyssey LI-COR
Next generation imaging

• stable near-infrared fluorescent 
signals and over 6 logs of linear 
dynamic range

• capture images with exactly the 
same settings every time with the 
AutoScan feature, for the most 
consistent and reproducible results. 

• analyze up to nine miniblots or six 
microplates in a single scan with a 
large imaging area.

near-IR fluorescence

• near-IR stains, labels, etc  (700-800 nm)



BioTek Plate Reader
fluorescence plate reader

• fluorescence detection w deep blocking filters and 
dichroic mirrors for the best level of performance

• dedicated absorbance detection system is 
monochromator-based

• dedicated optical elements for each individual 
detection technique

• detection modes include
• Fluorescence Intensity
• Fluorescence Polarization
• Time-Resolved Fluorescence
• AlphaScreen
• Luminescence
• UV-visible Absorbance

• three broad-spectrum light sources have been chosen 
for optimal illumination and excitation in all 
applications.



MicroCal Auto-iTC200
automated titration microcalorimeter

• fully automated, low volume, highly 
sensitive isothermal titration calorimeter

• delivers direct, label-free in solution 
measurement of all binding parameters in 
a single experiment

• applications include characterizing 
molecular interactions of small molecules, 
proteins, antibodies, nucleic acids, lipids 
and other biomolecules

• can also be used to measure enzyme 
kinetics.
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Microwave ovens

Cell phones

Sunburn

WFCR

“Radiation”

Classical:  electrons can 
have any energy

Eground

Eexcited

Eground

Eexcited

QM:  electrons can have only 
discrete (quantized) energies
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Classical:  electrons can 
have any energy

Eground

Eexcited

Eground

Eexcited

QM:  electrons can have only 
discrete (quantized) energies

Energy must approximately match There must be a mechanism
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Transition dipoles can be complicated There must be a mechanism

Wavefunction Probability

1s

2p

linear combination of 
the two

real part
imaginary part
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Transition dipoles can be complicated But symmetry CAN lead to zero or low probabilities
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Transition dipoles can be complicated But symmetry CAN lead to zero or low probabilities
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Transition dipoles can be complicated But symmetry CAN lead to zero or low probabilities
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But symmetry CAN lead to zero or low probabilities

C O
H

H +

-

C O
H

H +-

-+

C O

H

H
+
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n to π*π to π*

“a
llo

w
ed

”

“f
or

bi
dd

en
”

Which orbitals are 
more “extended?”

Which orbitals are 
more “compact?”Whitmore & Wallace (2007) 

Biopolymers 89, 392-400

Peptide bond

http://www3.interscience.wiley.com/cgi-bin/fulltext/116323652/HTMLSTART
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There must be a mechanism

Linear dichroism
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Linear dichroism Experiment Theory

Circular dichroism
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Experiment Theory

Circular dichroism
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Nuclei move much more slowly than 
electrons!
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If ktot is a mix of population, decay will be multiexponential
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A particular type of quenching

R

Donor

Acceptor

D0

D1

A0

A1

Wavefunction Probability

1s

2p

linear combination 
of the two

real part
imaginary part

Wavefunction Probability

1s
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linear combination 
of the two

real part
imaginary part

Interacting transition 
dipoles

oscillating transition 
dipole

oscillating transition 
dipole

Fluorescence Resonance Energy Transfer

Distance dependent

Angular dependence

Energy match

Competes w/ other mechs
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A particular type of quenching

Donor

Acceptor

D0

D1

A0

A1

Fluorescence Resonance Energy Transfer

Distance dependent

Angular dependence

Energy match

Competes w/ other mechs
D0

D1

Φ proportional to I/A 

photons emitted
photons absorbed

Fluorescence Quantum Yield
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A particular type of quenching

Donor

Acceptor

D0

D1

A0

A1

Fluorescence Resonance Energy Transfer

Distance dependent

Angular dependence

Energy match

Competes w/ other mechsCan Measure

Fluorescence 
of acceptor

Quenching of Donor 
Fluorescence
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A particular type of quenching

Fluorescence Resonance Energy Transfer

Distance dependent

Angular dependence

Energy match

Competes w/ other mechs

Rotation can average out angular 
dependence, but BE CAREFUL!
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Anisotropy / Polarization

excitation

emission

emission

 IP > 0

I⊥ > 0

fluid

emission

emission

 IP > 0 A ≈ 0

Full random reorientation,  A=0
monochromatic, all orientations

monochromatic, single orientation

excitation 
polarizing filter

parallel perpendicular

I⊥ IP

Excitation slit

500 550 600 650 700

wavelength (nm)

In
te

ns
ity

Absorbance

Emission

Excitation 
bandpass Emission bandpass

But excitation is MUCH 
brighter than emission!
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Anisotropy / Polarization

excitation

emission

emission

 IP > 0

I⊥ > 0

fluid

emission

emission

 IP > 0 A ≈ 0

Full random reorientation,  A=0

light

all freqs
all orientations

monochromatic, all orientations

monochromatic, single orientation

excitation 
polarizing filter

parallel perpendicular

I⊥ IP
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single photon avalanche detector

Compare signals

Lasers and Imaging - A Whole New World!
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Lasers and Imaging - A Whole New World!

Image a cell

slower 
medium

faster 
medium

critical 
angle

TIR

glass 
(quartz)

water

Total Internal Reflectance

slower 
medium

faster 
medium

Quartz

water
glass w different 
refractive index

Quartz

water

oscillating field

hv
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Surface Detection / Immobilization / Localization

slower 
medium

faster 
medium

critical 
angle

TIR

glass 
(quartz)

water

Total Internal Reflectance

slower 
medium

faster 
medium

Quartz

water
glass w different 
refractive index

Quartz

water

oscillating field

hv

dip angle

Dextran layer

Your bound protein

Thin metal (Au) layer

detected

not detected

SPR

Fluorescence at Surfaces

Bio-Layer Interferometry
switchSENSE
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Single Molecule Approaches

Traps both laterally and axially

laser light inlaser light in

1 21 2

F12

net

F

F
F1 2

net

F

F

Laser (Bead) Trap

Steve Block, et al.

*NOT* Single photon!!
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More with refraction

slower 
medium

faster 
medium

Quartz

water

Vacuum

slowed 
longer

slowed 
less

By Ulflund - https://commons.wikimedia.org/w/index.php?curid=73784342

θ
r

DetectorReference 
Detector

laser
sample

SEC - Size Exclusion Chromatography

MALS - Multi-Angle Light Scattering

HPLC

SEC-MALS
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Diffusion of Molecules

D = kBT
6πηr

η = solution viscosity

r = hydrodynamic radius

+ +
+

++
+

“apparent size”

H2O

H
2O

H2O
H

2O

H
2O

H2O
H2O

H2O H2O

H2O

H2O

H
2O

Diffusion (Brownian Motion)
Photon Correlation Spectroscopy

you see dark and 
light spots, no 

pattern. 
“blinking”

Dynamic Light Scattering
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Diffusion of Molecules

D = kBT
6πηr

η = solution viscosity

r = hydrodynamic radius

+ +
+

++
+

“apparent size”

H2O

H
2O

H2O
H

2O

H
2O

H2O
H2O

H2O H2O

H2O

H2O

H
2O

Diffusion (Brownian Motion)

+–
–

Malvern Zetasizer ZSP - dynamic light scattering (DLS) system
aka Laser-Doppler Electrophoresis

Electrophoretic Light Scattering
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More fun with fluorescence

H2O

H2O

H2O

H2O

H2O

H2O

H2O

H2O

H2O

H2O
H2O

Net transport away

collisions

temperature gradient

H2O
H2O

H2O

Fluorescence Excitation
e.g., 420 nm

Fluorescence Emission
e.g., 503 nm

Laser heating
1480 nm ∆T ≈ 2-6 °C

(local)

glass capillary

Microscale Thermophoresis
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Measuring Heats

q = ΔH Δ PL[ ]

very small heat loss

very small heat input

P + L
Ka= 1Kd⎯ →⎯⎯⎯← ⎯⎯⎯ PL

-0.40
-0.35
-0.30
-0.25
-0.20
-0.15
-0.10
-0.05
0.00

0 2 4 6 8 10

0.0

0.4

0.8

P [
]=

P [
] 0   

L [
]=

0 
  
PL [

]=
0

Δ
PL [

]
Δ
PL [

] Δ
PL [

]

Δ
PL [

]

But remember that you can always assess van’t Hoff 
enthalpies from the T-dependence of K

In either case, ∆H is for the entire system, not just your 
intended system, so be careful not to over-interpret
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Ignore the old textbooks
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A + B
Kd⎯ →⎯← ⎯⎯ AB Kd =

A[ ] B[ ]
AB[ ]

AT = A[ ] + AB[ ]
BT = B[ ] + AB[ ]

Knowns

A[ ] = AT − AB[ ]
B[ ] = BT − AB[ ]

Kd AB[ ] = A[ ] B[ ] = AT − AB[ ]( ) BT − AB[ ]( )
Kdx = AT − x( ) BT − x( )

Assume BT >> x

x2 − AT + BT + Kd( )x + AT BT = 0

ax2 + bx + c = 0        x = −b ± b2 − 4ac
2a

Equilibrium Math

Never Make Unnecessary Assumptions!

0 4 8 12
0.1

0.2

0.3

[L]

A

0.4 0.8
0.0

0.4

v New

v/
[L

] N
ew

Never Do Unnecessary Manipulations!
0 5 10 15 20 25 30

0.
08

0.
10

0.
12

0.
14

0.
16

0.
18

0.
20

[ligand] (µM)

An
is

ot
ro

py



Chem 728 Recap

0 5 10 15 20 25 30

0.
08

0.
10

0.
12

0.
14

0.
16

0.
18

0.
20

[ligand] (µM)

An
is

ot
ro

py

[P] = 10 µM

A + B
Kd⎯ →⎯← ⎯⎯ AB Kd =

A[ ] B[ ]
AB[ ]

AT = A[ ] + AB[ ]
BT = B[ ] + AB[ ]

Knowns

A[ ] = AT − AB[ ]
B[ ] = BT − AB[ ]

Kd AB[ ] = A[ ] B[ ] = AT − AB[ ]( ) BT − AB[ ]( )
Kdx = AT − x( ) BT − x( )

Assume BT >> x

x2 − AT + BT + Kd( )x + AT BT = 0

ax2 + bx + c = 0        x = −b ± b2 − 4ac
2a

Equilibrium Math

Never Make Unnecessary Assumptions!
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Learn to Love R!

ax2 + bx + c = 0        x = −b ± b2 − 4ac
2a

Ignore the old textbooks
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Always Plot and Analyze Your Residuals!
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Always remember that reported errors rely on assumptions

0 4 8 12
0.1

0.2

0.3

[L]

A

Learn to Love R!

ax2 + bx + c = 0        x = −b ± b2 − 4ac
2a

Ignore the old textbooks

Formula: edat1$dat ~ eDecay(edat1$t, ampl, tau) 

Parameters: 
     Estimate Std. Error t value Pr(>|t|)   
   
ampl   9.5239     0.2294   41.52   <2e-16 *** 
tau    6.2702     0.2308   27.16   <2e-16 ***

Is the model the correct one?

Are errors “normally distributed”?

Always do a “gut check” on your resultsR can simulate kinetics!
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		16		15		0.952847204895546

		17		16		0.821704611893569

		18		17		1.11566967792908

		19		18		0.593906045950062

		20		19		1.11418475201834

		21		20		0.708364761054182

		22		21		0.72023918579785

		23		22		0.723853529706495

		24		23		0.543261685170936

		25		24		0.489932201451476

		26		25		0.106730121078648

		27		26		0.552338660825658

		28		27		0.359952511103858

		29		28		0.225839470305989

		30		29		0.0831649059854482

		31		30		0.234080907315526

		32		31		0.349644169081954

		33		32		0.0838724957276931

		34		33		0.298975414805918

		35		34		0.139444321136691

		36		35		0.214579143738712

		37		36		0.469889204318581

		38		37		0.114747185461748

		39		38		-0.115498216635279

		40		39		-0.185323583062656

		41		40		-0.0341942516597349




 # Simulating basic enzyme kinetics - no assumptions
#
#  Craig Martin    Chem 728   2021


# Wrap everything in a user function (not necessary, but easier to tweak below)

# the following sets defaults for some parameters (that then become optional)
EnzKin <- function(t0=0, tf, tincr=(tf-t0)/50, k1p, km1p, kcp, krp=0, E0, S0, ES0=0, P0=0) {

	# create a time range
	time <- seq(t0, tf, by = tincr)

	# parameters:
	parameters <- c(k1=k1p, km1=km1p, kc=kcp, kr=krp)

	# initial condition:
	state <- c(E=E0, S=S0, ES=ES0, P=P0)

	# R function to calculate the value of the derivatives at each time value
	# Use the names of the variables as defined in the vectors above
	# define in same order as specified above in state
	multiKin <- function(t, state, parameters){
	  with(as.list(c(state, parameters)), {
		dE <-  -k1*E*S + km1*ES + kc*ES - kr*E*P
		dS <-  -k1*E*S + km1*ES
		dES <- k1*E*S - km1*ES - kc*ES + kr*E*P    
		dP <-  kc*ES - kr*E*P
		
		# return derivatives in same relative order as specified above in state
		return(list(c(dE, dS, dES, dP)))
	  })
	}  ## end of function multiKin

	## Integration with 'ode' - ordinary differential equations
	out1 <- ode(y = state, times = time, func = multiKin, parms = parameters)

	# get results as a dataframe
	df <- as.data.frame(out1)
	
	Km <- (km1p+kcp)/k1p   # not used right now

	# return a list with things we might want to access directly in plotting, etc
	outl <- list("output"=out1, "t"=time, "E"=df$E, "S"=df$S, "ES"=df$ES, "P"=df$P )

	return(outl)
 }

# You can see from above, how you might output a "y-value" that could feed into nls

# call the above function (you can omit optional parameters)
 out <- EnzKin(tf=15,  tincr=0.01, k1p=0.1, km1p=0.1, kcp=0.2, E0=0.2, S0=20.0)


# plot the results (this will auto-scale to the product range; over-ride if desired)
plot( out$t, out$P, col="green", type="l", xlab="Time (s)", ylab="Concentration")
lines(out$t, out$E, col="purple")
lines(out$t, out$ES, col="red")
lines(out$t, out$S, col="blue")

legend(200, 3, c("P", "E", "ES", "S"), col = c("green", "purple", "red", "blue"), lty=c("solid","solid","solid","solid"))



# Simulating basic enzyme kinetics - no assumptions
#
#  Craig Martin    Chem 728   2021


# Wrap everything in a user function (not necessary, but easier to tweak below)

# the following sets defaults for some parameters (that then become optional)
EnzKin <- function(t0=0, tf, tincr=(tf-t0)/50, k1p, km1p, kcp, krp=0, kifp=0, kirp=0, E0, S0, ES0=0, P0=0, EI0=0, I0=0) {

	# create a time range
	time <- seq(t0, tf, by = tincr)

	# parameters:
	parameters <- c(k1=k1p, km1=km1p, kc=kcp, kr=krp, ki=kifp, kir=kirp)

	# initial condition:
	state <- c(E=E0, S=S0, ES=ES0, P=P0, I=I0, EI=EI0)

	# R function to calculate the value of the derivatives at each time value
	# Use the names of the variables as defined in the vectors above
	# define in same order as specified above in state
	multiKin <- function(t, state, parameters){
	  with(as.list(c(state, parameters)), {
		dE <-  -k1*E*S + km1*ES + kc*ES - kr*E*P - ki*E*I + kir*EI
		dS <-  -k1*E*S + km1*ES
		dES <- k1*E*S - km1*ES - kc*ES + kr*E*P    
		dP <-  kc*ES - kr*E*P
		
		dI <- -ki*E*I + kir*EI
		dEI <- ki*E*I - kir*EI
		
		# return derivatives in same relative order as specified above in state
		return(list(c(dE, dS, dES, dP, dI, dEI)))
	  })
	}  ## end of function multiKin

	## Integration with 'ode' - ordinary differential equations
	out1 <- ode(y = state, times = time, func = multiKin, parms = parameters)

	# get results as a dataframe
	df <- as.data.frame(out1)
	
	Km <- (km1p+kcp)/k1p   # not used right now
	Ki <- kirp/kifp

	# return a list with things we might want to access directly in plotting, etc
	outl <- list("output"=out1, "t"=time, "E"=df$E, "S"=df$S, "ES"=df$ES, "P"=df$P, "I"=df$I, "EI"=df$EI )

	return(outl)
 }

# You can see from above, how you might output a "y-value" that could feed into nls

# call the above function (you can omit optional parameters)
#out <- EnzKin(t0=0, tf=15, tincr=0.01, k1p=0.1, km1p=0.1, kcp=0.2, krp=0.001, E0=0.2, S0=2.0)

#out <- EnzKin(tf=150, tincr=0.01, k1p=0.1, km1p=0.1, kcp=0.2, E0=0.2, S0=2.0)
#out <- EnzKin(tf=40,  tincr=0.01, k1p=0.1, km1p=0.1, kcp=0.2, E0=0.2, S0=2.0)
#out <- EnzKin(tf=15,  tincr=0.01, k1p=0.1, km1p=0.1, kcp=0.2, E0=0.2, S0=2.0)
 out <- EnzKin(tf=15,  tincr=0.01, k1p=0.1, km1p=0.1, kcp=0.2, E0=0.2, S0=20.0, I=5, kifp=0.1, kirp=0.1)


# plot the results (this will auto-scale to the product range; over-ride if desired)
plot( out$t, out$P, col="green", type="l", xlab="Time (s)", ylab="Concentration")
lines(out$t, out$E, col="purple")
lines(out$t, out$ES, col="red")
lines(out$t, out$S, col="blue")
lines(out$t, out$EI, col="red",lty="dotted")
lines(out$t, out$I, col="blue",lty="dotted")

#legend(200, 3, c("P", "E", "ES", "S"), col = c("green", "purple", "red", "blue"), lty=c("solid","solid","solid","solid"))
#legend(200, 3, c("P", "E", "ES", "S"), col = c("green", "purple", "red", "blue"), lty=c("solid","solid","solid","solid"))
#legend(0, 0.3, c("P", "E", "ES", "S"), col = c("green", "purple", "red", "blue"), lty=c("solid","solid","solid","solid"))
#legend(10, 0.06, c("P", "E", "ES", "S"), col = c("green", "purple", "red", "blue"), lty=c("solid","solid","solid","solid"))
 legend(1, 0.45, c("P", "E", "ES", "S"), col = c("green", "purple", "red", "blue"), lty=c("solid","solid","solid","solid"))


				t		dat

		1		0		10.1385967718684

		2		1		8.35533475533268

		3		2		6.76788471742473

		4		3		5.36280912133003

		5		4		4.48247204833858

		6		5		4.18185893519706

		7		6		3.34896480340668

		8		7		2.71315594667858

		9		8		2.62614956633054

		10		9		2.06087018509515

		11		10		1.86074194679208

		12		11		1.97873314323764

		13		12		1.83378700440039

		14		13		1.51439267158402

		15		14		1.30714846254938

		16		15		0.741412075403802

		17		16		0.631299882299171

		18		17		1.02965656564605

		19		18		0.902298811540632

		20		19		0.558746438644141

		21		20		0.400682660920331

		22		21		0.802962302399545

		23		22		0.515497522312792

		24		23		0.905477723273229

		25		24		0.344178788232269

		26		25		0.103340446000128

		27		26		0.879290356441754

		28		27		0.577592309885709

		29		28		0.493046226597491

		30		29		0.366163886781245

		31		30		0.125189162368687

		32		31		0.466644952642418

		33		32		-0.095514224245819

		34		33		0.177120019463404

		35		34		0.20511866185474

		36		35		0.312909299607934

		37		36		0.184261436760406

		38		37		0.151930611035154

		39		38		0.216249309890573

		40		39		-0.0782341680185992

		41		40		0.32520930978664




# Simulating complex kinetics
#
#  Craig Martin    Chem 728   2021


# Wrap everything in a user function (a bit fancier than what was in class)
MultiStepModel1 <- function(trange, k1p, k2p, A0, B0, C0, D0, E0) {
    
    # parameters: a named vector
    parameters <- c(k1=k1p, k2=k2p)
    
    # initial condition: a named vector
    state <- c(A=A0,B=B0,C=C0,D=D0,E=E0)
    
    # R function to calculate the value of the derivatives at each time value
    # Use the names of the variables as defined in the vectors above
    multiKin <- function(t, state, parameters){
      with(as.list(c(state, parameters)), {
        dA <-  -k1*E*A
        dB <-  k1*E*A - k2*B*C
        dC <-  -k2*B*C
        dD <-  k2*B*C
        dE <-  k2*B*C - k1*E*A
        return(list(c(dA, dB, dC, dD, dE)))
      })
    }
    ## Integration with 'ode' - ordinary differential equations
    out1 <- ode(y = state, times = time, func = multiKin, parms = parameters)
    
    # to prep for plotting, create a dataframe as a part of the out1 object
    out1.df = as.data.frame(out)

    return(out1)
 }
 # You can see from above, how you might output a "y-value" that could feed into nls
 
 	# Set up the time range
 	time <- seq(0, 40, by = 0.01)

	## out <- MultiStepModel1(time, 0.08, 0.02, 5.0, 0.0, 50.0, 0.0, 0.5)
	
	out <- MultiStepModel1(trange = time, k1p=0.8, k2p=0.005, A0=5.0, B0=0.0, C0=100.0, D0=0.0, E0=0.5)
    
    plot(out.df$time, out.df$A, type="l", col="green", xlab="Time (s)", ylab="Concentration", ylim=c(0.0,5.0))
    lines(out.df$time, out.df$B, col="purple")
    lines(out.df$time, out.df$C, col="red")
    lines(out.df$time, out.df$D, col="blue")
    lines(out.df$time, out.df$E, col="brown")
    
    legend(30, 4, c("A", "B", "C", "D", "E"), col = c("green", "purple", "red", "blue", "brown"), lty=c("solid","solid","solid","solid","solid"))


sink("output.txt", append=FALSE, split=TRUE)

t <- 0:40

f1 <- 0.4
f2 <- 0.5

sdv <- 0.2

tau1 <- 2.5
tau2 <- 10.0
tau3 <- 5.0

eDecay <- function(t, ampl, tau) (ampl*exp(-t/tau))
eDecay2 <- function(t, ampl, f1, tau1, tau2) (ampl*((f1*exp(-t/tau1))+((1-f1)*exp(-t/tau2))))
eDecay3 <- function(t, ampl, f1, tau1, f2, tau2, tau3) (ampl*((f1*exp(-t/tau1))+(f2*exp(-t/tau2))-((1-f1-f2)*(exp(-t/tau3)))))

# This is how data could be generated - but we won't use this
#dat1 <- eDecay(t,f1,tau1) + rnorm(length(t),mean=0,sd=sdv)
#dat2 <- eDecay2(t,f1,tau1,f2,tau2) + rnorm(length(t),mean=0,sd=sdv)
#dat3 <- eDecay3(t,1.0,f1,tau1,f2,tau2,tau3) + rnorm(length(t),mean=0,sd=sdv)

# Instead read in data from a file - process each breakout group separately

print("======= Group 1 =======")

# Group 1
edat1 <- read.csv("DataGrp1.csv", header = TRUE)
plot(edat1$t,edat1$dat,xlab="Time (s)",ylab="Fluorescence",main="Group 1")

model1G1 <- nls(edat1$dat ~ eDecay(edat1$t,ampl,tau), data=edat1, start=list(ampl=11,  tau=5), trace=TRUE)
summary(model1G1)
lines(edat1$t,predict(model1G1))

pdf("MonoFitG1.pdf")
plot(edat1$t, edat1$dat,xlab="Time (s)",ylab="Fluorescence",main="Group 1")
lines(edat1$t,predict(model1G1))
dev.off()

pdf("MonoFitG1Resid.pdf")
plot(edat1$t,residuals(model1G1),xlab="Time (s)",ylab="Residuals   (Expt - Theory)",main="Group 1")
abline(h=c(0.0), lty=2)
dev.off()

model2G1 <- nls(edat1$dat ~ eDecay2(edat1$t,ampl,f1,tau1,tau2), data=edat1, start=list(ampl=10, f1=0.5, tau1=2.5, tau2=10), trace=TRUE)
summary(model2G1)
lines(edat1$t,predict(model1G1))

pdf("BiExpFitG1.pdf")
plot(edat1$t, edat1$dat,xlab="Time (s)",ylab="Fluorescence",main="Group 1 Biphasic")
lines(edat1$t,predict(model1G1))
lines(edat1$t,predict(model2G1),lty="dashed")
dev.off()

pdf("BiExpFitG1Resid.pdf")
plot(edat1$t,residuals(model2G1),xlab="Time (s)",ylab="Residuals   (Expt - Theory)",main="Group 1 Biphasic")
abline(h=c(0.0), lty=2)
dev.off()


print("======= Group 2 =======")

# Group 2
edat2 <- read.csv("DataGrp2.csv", header = TRUE)
plot(edat2$t,edat2$dat,xlab="Time (s)",ylab="Fluorescence",main="Group 2")

model1G2 <- nls(edat2$dat ~ eDecay(edat2$t,ampl,tau), data=edat2, start=list(ampl=10,  tau=5), trace=TRUE)
summary(model1G2)
lines(edat2$t,predict(model1G2))

pdf("MonoFitG2.pdf")
plot(edat2$t,edat2$dat,xlab="Time (s)",ylab="Fluorescence",main="Group 2")
lines(edat2$t,predict(model1G2))
dev.off()

pdf("MonoFitG2Resid.pdf")
plot(edat2$t,residuals(model1G2),xlab="Time (s)",ylab="Residuals   (Expt - Theory)",main="Group 2")
abline(h=c(0.0), lty=2)
dev.off()

model2G2 <- nls(edat2$dat ~ eDecay2(edat2$t,ampl,f1,tau1,tau2), data=edat2, start=list(ampl=10, f1=0.5, tau1=2.5, tau2=10), trace=TRUE)
summary(model2G2)
lines(edat2$t,predict(model2G2),lty="dashed")

pdf("BiExpFitG2.pdf")
plot(edat2$t, edat2$dat,xlab="Time (s)",ylab="Fluorescence",main="Group 2 Biphasic")
lines(edat2$t,predict(model1G2))
lines(edat2$t,predict(model2G2),lty="dashed")
dev.off()

pdf("BiExpFitG2Resid.pdf")
plot(edat2$t,residuals(model2G2),xlab="Time (s)",ylab="Residuals   (Expt - Theory)",main="Group 2 Biphasic")
abline(h=c(0.0), lty=2)
dev.off()


print("======= Group 3 =======")

# Group 3
edat3 <- read.csv("DataGrp3.csv", header = TRUE)
plot(edat3$t,edat3$dat,xlab="Time (s)",ylab="Fluorescence",main="Group 3")

model1G3 <- nls(edat3$dat ~ eDecay(edat3$t,ampl,tau), data=edat3, start=list(ampl=10,  tau=5), trace=TRUE)
summary(model1G3)
lines(edat3$t,predict(model1G3))

pdf("MonoFitG3.pdf")
plot(edat3$t,edat3$dat,xlab="Time (s)",ylab="Fluorescence",main="Group 3")
lines(edat3$t,predict(model1G3))
dev.off()

pdf("MonoFitG3Resid.pdf")
plot(edat3$t,residuals(model1G3),xlab="Time (s)",ylab="Residuals   (Expt - Theory)",main="Group 3")
abline(h=c(0.0), lty=2)
dev.off()

model2G3 <- nls(edat3$dat ~ eDecay2(edat3$t,ampl,f1,tau1,tau2), data=edat2, start=list(ampl=10, f1=0.5, tau1=2.5, tau2=10), trace=TRUE)
summary(model2G3)
lines(edat3$t,predict(model2G3),lty="dashed")

pdf("BiExpFitG3.pdf")
plot(edat3$t, edat3$dat,xlab="Time (s)",ylab="Fluorescence",main="Group 3 Biphasic")
lines(edat3$t,predict(model1G3))
lines(edat3$t,predict(model2G3),lty="dashed")
dev.off()

pdf("BiExpFitG3Resid.pdf")
plot(edat3$t,residuals(model2G3),xlab="Time (s)",ylab="Residuals   (Expt - Theory)",main="Group 3 Biphasic")
abline(h=c(0.0), lty=2)
dev.off()


print("======= Group 4 =======")

# Group 4
edat4 <- read.csv("DataGrp4.csv", header = TRUE)
plot(edat4$t,edat4$dat,xlab="Time (s)",ylab="Fluorescence",main="Group 4")

model1G4 <- nls(edat4$dat ~ eDecay(edat4$t,ampl,tau), data=edat4, start=list(ampl=10,  tau=5), trace=TRUE)
summary(model1G4)
lines(edat4$t,predict(model1G4))

pdf("MonoFitG4.pdf")
plot(edat4$t,edat4$dat,xlab="Time (s)",ylab="Fluorescence",main="Group 4")
lines(edat4$t,predict(model1G4))
dev.off()

pdf("MonoFitG4Resid.pdf")
plot(edat4$t,residuals(model1G4),xlab="Time (s)",ylab="Residuals   (Expt - Theory)",main="Group 4")
abline(h=c(0.0), lty=2)
dev.off()

model2G4 <- nls(edat4$dat ~ eDecay2(edat4$t,ampl,f1,tau1,tau2), data=edat4, start=list(ampl=10, f1=0.5, tau1=2.5, tau2=10), trace=TRUE)
summary(model2G4)
lines(edat4$t,predict(model2G4),lty="dashed")

pdf("BiExpFitG4.pdf")
plot(edat4$t, edat4$dat,xlab="Time (s)",ylab="Fluorescence",main="Group 4 Biphasic")
lines(edat4$t,predict(model1G4))
lines(edat4$t,predict(model2G4),lty="dashed")
dev.off()

pdf("BiExpFitG4Resid.pdf")
plot(edat4$t,residuals(model2G4),xlab="Time (s)",ylab="Residuals   (Expt - Theory)",main="Group 4 Biphasic")
abline(h=c(0.0), lty=2)
dev.off()


print("======= Groups 1-4 =======")

edat <- rbind(edat1,edat2,edat3,edat4)

t <- edat$t
dta <- edat$dat

edat$t
edat$dat

edt <- edat[order(edat$t), ]

plot(edt$t,edat$dat,xlab="Time (s)",ylab="Fluorescence",main="Groups 1-4")

print("Debug0")
model1 <- nls(edt$dat ~ eDecay(edt$t,ampl,tau), data=edt, start=list(ampl=10, tau=5), trace=TRUE)
print("Debug1")
summary(model1)
print("Debug2")
lines(edt$t,predict(model1))

pdf("MonoFit.pdf")
plot(edt$t,edt$dat,xlab="Time (s)",ylab="Fluorescence",main="Groups 1-4")
lines(edt$t,predict(model1))
dev.off()

pdf("MonoFitResid.pdf")
plot(edt$t,residuals(model1),xlab="Time (s)",ylab="Residuals   (Expt - Theory)",main="Groups 1-4")
abline(h=c(0.0), lty=2)
dev.off()

model2 <- nls(edt$dat ~ eDecay2(edt$t,ampl,f1,tau1,tau2), data=edt, start=list(ampl=10, f1=0.5, tau1=2.5, tau2=10), trace=TRUE)
summary(model2)
lines(edt$t,predict(model2),lty="dashed")

pdf("BiExpFit.pdf")
plot(edt$t, edt$dat,xlab="Time (s)",ylab="Fluorescence",main="Groups 1-4 Biphasic")
lines(edt$t,predict(model1))
lines(edt$t,predict(model2),lty="dashed")
dev.off()

pdf("BiExpFitResid.pdf")
plot(edt$t,residuals(model2),xlab="Time (s)",ylab="Residuals   (Expt - Theory)",main="Groups 1-4 Biphasic")
abline(h=c(0.0), lty=2)
dev.off()

print("Combined")

pdf("MonoFitAll.pdf")
plot(edat1$t,edat1$dat,col="green",xlab="Time (s)",ylab="Fluorescence",main="Groups 1-4")
points(edat2$t,edat2$dat,col="blue")
points(edat3$t,edat3$dat,col="red")
points(edat4$t,edat4$dat,col="orange")

lines(edat1$t,predict(model1G1),col="green")
lines(edat2$t,predict(model1G2),col="blue")
lines(edat3$t,predict(model1G3),col="red")
lines(edat4$t,predict(model1G4),col="orange")
dev.off()

pdf("MonoFitResid.pdf")
plot(edat1$t,residuals(model1G1),col="green",xlab="Time (s)",ylab="Residuals   (Expt - Theory)",main="Groups 1-4")
points(edat2$t,residuals(model1G2),col="blue")
points(edat3$t,residuals(model1G3),col="red")
points(edat4$t,residuals(model1G4),col="orange")
abline(h=c(0.0), lty=2)
dev.off()


pdf("BiExpFitAll.pdf")
plot(edat1$t,edat1$dat,col="green",xlab="Time (s)",ylab="Fluorescence",main="Groups 1-4 Biphasic")
points(edat2$t,edat2$dat,col="blue")
points(edat3$t,edat3$dat,col="red")
points(edat4$t,edat4$dat,col="orange")

lines(edat1$t,predict(model2G1),col="green")
lines(edat2$t,predict(model2G2),col="blue")
lines(edat3$t,predict(model2G3),col="red")
lines(edat4$t,predict(model2G4),col="orange")
dev.off()

pdf("BiExpFitResid.pdf")
plot(edat1$t,residuals(model2G1),col="green",xlab="Time (s)",ylab="Residuals   (Expt - Theory)",main="Groups 1-4 Biphasic")
points(edat2$t,residuals(model2G2),col="blue")
points(edat3$t,residuals(model2G3),col="red")
points(edat4$t,residuals(model2G4),col="orange")
abline(h=c(0.0), lty=2)
dev.off()

pdf("BothFitAll.pdf")
plot(edat1$t,edat1$dat,col="green",xlab="Time (s)",ylab="Fluorescence",main="Groups 1-4 Biphasic")
points(edat2$t,edat2$dat,col="blue")
points(edat3$t,edat3$dat,col="red")
points(edat4$t,edat4$dat,col="orange")

lines(edat1$t,predict(model1G1),col="green")
lines(edat2$t,predict(model1G2),col="blue")
lines(edat3$t,predict(model1G3),col="red")
lines(edat4$t,predict(model1G4),col="orange")

lines(edat1$t,predict(model2G1),col="green",lty="dashed")
lines(edat2$t,predict(model2G2),col="blue",lty="dashed")
lines(edat3$t,predict(model2G3),col="red",lty="dashed")
lines(edat4$t,predict(model2G4),col="orange",lty="dashed")
dev.off()

pdf("BiExpFitAllSimple.pdf")
plot(edat1$t,edat1$dat,xlab="Time (s)",ylab="Fluorescence",main="Groups 1-4 Biphasic")
points(edat2$t,edat2$dat)
points(edat3$t,edat3$dat)
points(edat4$t,edat4$dat)
lines(edt$t,predict(model2))
lines(edt$t,predict(model1),lty="dashed")
legend(15, 8, c("Mono Exponential", "Bi Exponential"), lty = c("dashed","dotted"), col = c("black", "black"))
dev.off()

pdf("BiExpFitAllSimplePluMinusTau2.pdf")
plot(edat1$t,edat1$dat,xlab="Time (s)",ylab="Fluorescence",main="Biphasic ±2xStdErr")
points(edat2$t,edat2$dat)
points(edat3$t,edat3$dat)
points(edat4$t,edat4$dat)
lines(edt$t,predict(model2))
lines(edt$t,eDecay2(edt$t,9.96,0.53,3.16,8.85),lty="dashed",lwd=2,col="red")
lines(edt$t,eDecay2(edt$t,9.96,0.53,3.16,11.58),lty="dashed",lwd=2,col="blue")
dev.off()

pdf("BiExpFitAllSimpleConfIntTau2.pdf")
plot(edat1$t,edat1$dat,xlab="Time (s)",ylab="Fluorescence",main="Biphasic Confidence Intervals")
points(edat2$t,edat2$dat)
points(edat3$t,edat3$dat)
points(edat4$t,edat4$dat)
lines(edt$t,predict(model2))
lines(edt$t,eDecay2(edt$t,9.96,0.53,3.16,9.03),lty="dashed",lwd=2,col="red")
lines(edt$t,eDecay2(edt$t,9.96,0.53,3.16,12.05),lty="dashed",lwd=2,col="blue")
dev.off()

pdf("BiExpFitAllSimplePluMinusTau1.pdf")
plot(edat1$t,edat1$dat,xlab="Time (s)",ylab="Fluorescence",main="Biphasic ±2xStdErr")
points(edat2$t,edat2$dat)
points(edat3$t,edat3$dat)
points(edat4$t,edat4$dat)
lines(edt$t,predict(model2))
lines(edt$t,eDecay2(edt$t,9.96,0.53,2.57,10.2),lty="dashed",lwd=2,col="red")
lines(edt$t,eDecay2(edt$t,9.96,0.53,3.76,10.2),lty="dashed",lwd=2,col="blue")
dev.off()

pdf("BiExpFitAllSimpleConfIntTau1.pdf")
plot(edat1$t,edat1$dat,xlab="Time (s)",ylab="Fluorescence",main="Biphasic Confidence Intervals")
points(edat2$t,edat2$dat)
points(edat3$t,edat3$dat)
points(edat4$t,edat4$dat)
lines(edt$t,predict(model2))
lines(edt$t,eDecay2(edt$t,9.96,0.53,2.55,10.2),lty="dashed",lwd=2,col="red")
lines(edt$t,eDecay2(edt$t,9.96,0.53,3.80,10.2),lty="dashed",lwd=2,col="blue")
dev.off()

pdf("BiExpFitAllSimplePluMinusFrac.pdf")
plot(edat1$t,edat1$dat,xlab="Time (s)",ylab="Fluorescence",main="Biphasic ±2xStdErr")
points(edat2$t,edat2$dat)
points(edat3$t,edat3$dat)
points(edat4$t,edat4$dat)
lines(edt$t,predict(model2))
lines(edt$t,eDecay2(edt$t,9.96,0.42,3.16,10.2),lty="dashed",lwd=2,col="red")
lines(edt$t,eDecay2(edt$t,9.96,0.66,3.16,10.2),lty="dashed",lwd=2,col="blue")
dev.off()

pdf("BiExpFitAllSimpleConfIntFrac.pdf")
plot(edat1$t,edat1$dat,xlab="Time (s)",ylab="Fluorescence",main="Biphasic Confidence Intervals")
points(edat2$t,edat2$dat)
points(edat3$t,edat3$dat)
points(edat4$t,edat4$dat)
lines(edt$t,predict(model2))
lines(edt$t,eDecay2(edt$t,9.96,0.42,3.16,10.2),lty="dashed",lwd=2,col="red")
lines(edt$t,eDecay2(edt$t,9.96,0.66,3.16,10.2),lty="dashed",lwd=2,col="blue")
dev.off()

# Advanced analyses

anv <- anova(model1, model2)
summary(anv)

# Compare ranges of parameters vs confidence percentage
pf=profile(model2)
plot(pf, conf = c( 99, 95, 90, 80, 50)/100,  absVal = TRUE, ylab = NULL, lty = 2)

# Initial attempt at plotting correlation ellipses - not what I'm after, but a start
# plotcorr(summary(model2,correlation=TRUE))

plot(ellipse(model2,level=c(0.95),which=c('tau1','tau2')), type = 'l')

# This works!!!
plot(ellipse(model2,level=c(0.99),which=c('tau1','tau2')), type = 'l')
lines(ellipse(model2,level=c(0.95),which=c('tau1','tau2')), type = 'l')
lines(ellipse(model2,level=c(0.90),which=c('tau1','tau2')), type = 'l')
lines(ellipse(model2,level=c(0.80),which=c('tau1','tau2')), type = 'l')
lines(ellipse(model2,level=c(0.50),which=c('tau1','tau2')), type = 'l')

#predictMtrx <- predict(model2G1,interval="confidence",level=0.9)
#plot(edat1$t,edat1$dat,col="green",xlab="Time (s)",ylab="Fluorescence",main="Groups 1-4 Biphasic")
#lines(edat1$t,predict(model2G1))
#lines(edat1$t,predictMtrx,col="red")

rAll1 = c(residuals(model1G1),residuals(model1G2),residuals(model1G3),residuals(model1G4))

rAll2 = c(residuals(model2G1),residuals(model2G2),residuals(model2G3),residuals(model2G4))

sink()


Scatchard

LigBnd <- function(Lg, Kd, Et) (((Kd+Et+Lg)-sqrt((Kd+Et+Lg)^2-4*Et*Lg))/2)

LigBndGen <- function(Lg, Kd, Et, Au, Ab) (Au + (Ab-Au)*(((Kd+Et+Lg)-sqrt((Kd+Et+Lg)^2-4*Et*Lg))/2)/Et )


LBound <- myExpDecay(t,5.0,8.0,10.0) + rnorm(21,mean=0,sd=0.2)

l <- 1:50
y <- LigBnd(l,2,10)  + rnorm(51,mean=0,sd=0.4)
Anis <- 0.13 + 0.25*y/10

plot(l,Anis,xlab="[ligand] (µM)", ylab="Anisotropy")

dfexport <- data.frame(l, y)
write.csv(dfexport,"LigBndKd2Et10.csv", row.names = FALSE)

l <- 2*c(1:15)
yBnd <- LigBnd(l,2,10)  + rnorm(length(l),mean=0,sd=0.2)
Anis <- 0.09 + 0.1*yBnd/10

plot(l,Anis,xlab="[ligand] (µM)", ylab="Anisotropy",xlim=c(0,32),ylim=c(0.08,0.2))

model <- nls(Anis ~ LigBndGen(l,myKd,10,myAu,myAb), start=list(myKd=4,myAu=0.15,myAb=0.35))

summary(model)

Formula: Anis ~ LigBndGen(l, myKd, 10, myAu, myAb)

Parameters:
     Estimate Std. Error t value Pr(>|t|)    
myKd 2.183208   0.429515   5.083 0.000269 ***
myAu 0.088257   0.002243  39.344 4.69e-14 ***
myAb 0.192403   0.002815  68.357  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.002221 on 12 degrees of freedom

Number of iterations to convergence: 4 
Achieved convergence tolerance: 7.88e-07


dfexport <- data.frame(l, Anis)
write.csv(dfexport,"Anis_Kd2_Et10_Au0.09_Ab0.19.csv", row.names = FALSE)

fb = 1+(Anis-0.18)/(0.18-0.11)
plot(fb/l,fb)


 # Simulating SPR
#
#  Craig Martin    Chem 728   2021


# Wrap everything in a user function (not necessary, but easier to tweak below)

# the following sets defaults for some parameters (that then become optional)
EnzKin <- function(t0=0, tf, tincr=(tf-t0)/1000, pkon=0.10, pkoff=0.05, E0=0.5, D0=50, ED0=0.0, tOn=50, tOff=400) {

	# create a time range
	time <- seq(t0, tf, by = tincr)

	# parameters:
	parameters <- c(kon = pkon, koff = pkoff)

	# initial condition:
	state <- c(E = E0, D=D0, ED=ED0)

	# R function to calculate the value of the derivatives at each time value
	# Use the names of the variables as defined in the vectors above
	# define in same order as specified above in state
	multiKin <- function(t, state, parameters){
	
	  with(as.list(c(state, parameters)), {
	  	if ((t<tOn) || (t>tOff)) {vkon=0} else {vkon =kon}
	  
		dE <-  -vkon*E*D + koff*ED
		dD <-  0 #-vkon*E*D + koff*ED
		dED <- vkon*E*D - koff*ED
		
		# return derivatives in same relative order as specified above in state
		return(list(c(dE,dD,dED)))
	  })
	}  ## end of function multiKin

	## Integration with 'ode' - ordinary differential equations
	out1 <- ode(y = state, times = time, func = multiKin, parms = parameters)
	
	#plot(out1)

	# get results as a dataframe
	df <- as.data.frame(out1)
	

	# return a list with things we might want to access directly in plotting, etc
	outl <- list("output"=out1, "t"=time, "E"=df$E, "D"=df$D, "ED"=df$ED )
	
	#plot( df$t, df$ED, col="black", type="l", xlab="Time (s)", ylab="Concentration", ylim=c(0,0.5))
	#lines(df$t, df$E, col="purple")
	#lines(df$t, df$D, col="red")


	return(outl)
 }

# You can see from above, how you might output a "y-value" that could feed into nls

# call the above function (you can omit optional parameters)
 out <- EnzKin(tf = 1500, tOn=100, tOff=500, pkon=0.0002, pkoff=0.005)
 


# plot the results (this will auto-scale to the product range; over-ride if desired)
#plot( out$t, out$ED, col="black", type="l", xlab="Time (s)", ylab="Concentration", ylim=c(0,0.5))
#lines(out$t, out$E, col="purple")
#lines(out$t, out$D, col="red")

plot( out$t, out$ED, col="black", type="l", xlab="Time (s)", ylab="Concentration", ylim=c(0,0.5))


#legend(200, 3, c("P", "E", "ES", "S"), col = c("green", "purple", "red", "blue"), lty=c("solid","solid","solid","solid"))



x <- 240:500

# A single absorption band, in wavelength space
spectrum <- function(x, lmax, lwid, inten)(inten*dnorm(1/x, 1/lmax, sd=(1/lmax - 1/(lmax+lwid))))

# Scattering function, artificially intensity normalized a bit
scattr <- function(x,intenSc) (mean(x)^4 * intenSc / x^4)

# Single function, combining 1 absorption band with scattering
spectrumScatt <- function(x,lmax,lwid,inten,intenSc) (spectrum(x,lmax,lwid,inten)+scattr(x,intenSc))

plotspecscatt <- function(x, lmax, lwid, inten,intenSc) {

	plot(x,spectrumScatt(x,lmax,lwid,inten,intenSc),type="l",xlab="wavelength (nm)",ylab="Absorption")
	
	plot(x,spectrumScatt(x,lmax,lwid,inten,0),type="l",xlab="wavelength (nm)",ylab="Absorption")
	
	plot(x,spectrumScatt(x,lmax,lwid,inten,intenSc),type="l",xlab="wavelength (nm)",ylab="Absorption")
	lines(x,spectrumScatt(x,lmax,lwid,inten,0),lty="dashed")
	lines(x,spectrumScatt(x,lmax,lwid,0,intenSc),lty="dotted")
	}
	
plotspecscatt(x,260,20,10,2000)

# ============= The following is a fancy tool, not discussed in class =============

# Note that proteins absorb as follows
#   Trp - 287 nm, 260 nm (this is very crude; there are MORE bands!!!)
#	Tyr - 270 m, 212 nm (also a bit crude)
#   
# A more complete function, allowing for any number of peaks
#  In this case, one passes a list of lists to specify multiple electronic transitions

spectraScatt <- function(x,specDef,intenSc) {

	# create a vector of zero's
	specAddr <- rep(0,length(x))

	# add spectra to that, one at a time
	for (specval in specDef) {
		specAddr <- specAddr + spectrum(x,specval[1],specval[2],specval[3])
	}
	
	# add in scattering
	specAddr <- specAddr + scattr(x,intenSc)

	return(specAddr)
}

# User values here >>>>>>
spec1 <- c(287,10,4)
spec2 <- c(260, 6,3)
spec3 <- c(270, 5,3)
spec4 <- c(212,10,6)
spec <- list(spec1,spec2,spec3,spec4)


y <- spectraScatt(x,spec,2000)

plot(x,y,type="l")

icol <- 1
for (specval in spec) {
	lines(x,spectrum(x,specval[1],specval[2],specval[3]),lty="dashed", col=icol)
	icol <- icol + 1
	}
	
lines(x,scattr(x,2000),lty="dotted")


x <- 240:500

# A single absorption band, in wavelength space
spectrum <- function(x, lmax, lwid, inten)(inten*dnorm(1/x, 1/lmax, sd=(1/lmax - 1/(lmax+lwid))))

# Scattering function, artificially intensity normalized a bit
scattr <- function(x,intenSc) (mean(x)^4 * intenSc / x^4)

# Single function, combining 1 absorption band with scattering
spectrumScatt <- function(x,lmax,lwid,inten,intenSc) (spectrum(x,lmax,lwid,inten)+scattr(x,intenSc))

plotspecscatt <- function(x, lmax, lwid, inten,intenSc) {

	plot(x,spectrumScatt(x,lmax,lwid,inten,intenSc),type="l",xlab="wavelength (nm)",ylab="Absorption")
	
	plot(x,spectrumScatt(x,lmax,lwid,inten,0),type="l",xlab="wavelength (nm)",ylab="Absorption")
	
	plot(x,spectrumScatt(x,lmax,lwid,inten,intenSc),type="l",xlab="wavelength (nm)",ylab="Absorption")
	lines(x,spectrumScatt(x,lmax,lwid,inten,0),lty="dashed")
	lines(x,spectrumScatt(x,lmax,lwid,0,intenSc),lty="dotted")
	}
	
plotspecscatt(x,260,20,10,2000)

# ============= The following is a fancy tool, not discussed in class =============

# Note that proteins absorb as follows
#   Trp - 287 nm, 260 nm (this is very crude; there are MORE bands!!!)
#   Tyr - 270 m, 212 nm (also a bit crude)
#   
# A more complete function, allowing for any number of peaks
#  In this case, one passes a list of lists to specify multiple electronic transitions

spectraScatt <- function(x,specDef,intenSc) {

	# create a vector of zero's
	specAddr <- rep(0,length(x))

	# add spectra to that, one at a time
	for (specval in specDef) {
		specAddr <- specAddr + spectrum(x,specval[1],specval[2],specval[3])
	}
	
	# add in scattering
	specAddr <- specAddr + scattr(x,intenSc)

	return(specAddr)
}

# User values here >>>>>>
spec1 <- c(287,10,4)
spec2 <- c(260, 6,3)
spec3 <- c(270, 5,3)
spec4 <- c(212,10,6)
spec <- list(spec1,spec2,spec3,spec4)


y <- spectraScatt(x,spec,2000)

plot(x,y,type="l")

icol <- 1
for (specval in spec) {
	lines(x,spectrum(x,specval[1],specval[2],specval[3]),lty="dashed", col=icol)
	icol <- icol + 1
	}
	
lines(x,scattr(x,2000),lty="dotted")



