Syllabus - Chem 728 - Physical Biochemistry

Overview - EM Radiation, Energies, Quantum nature of

Tu 22 oyerything - Lec Notes - Video

Electronic Spectra |l - Transition dipole moments;
Th 2/4  symmetry; Einstein coeff; Boltzmann distrib - Lec Notes
- Video - extra tutorial

Circular Dichroism (& Linear) - demo of polarization - Lec

Tu 1273 Notes - Video

Th 2/11 Fluorescence | - Jablonski Diagram, fundamentals - Lec
Notes - Video - Quenching supplement
Fluorescence Il - Lifetimes, quenching of all sorts - Lec

Tu 2716 Notes - Video

Th 2/18 Fluorescence lll - Lifetimes, FRET (and dyes, beacons),
anisotropy - Lec Notes - Video

Tu 2/23 Fluorescence IV - Fluorimeters, Anisotropy, Intro to

single molecule - Lec Notes - Video

Th 2/25 In-class Quiz; Fluorescence V - TIRF, Laser traps - Lec
Notes - Video

Single molecule (cont), AFM, Scattering - Lec Notes -
Video

Scattering, FLIM-FRET, Aniso imaging, Bit of R - Lec
Notes - Video - DLS Long Video

Tu 3/2

Th 3/4

Intro to R - be sure that your computer has R installed -
Tu 3/9 :
Lec Notes (No video)

Th 3/11 Curve fitting - Lec Notes - Video - (big ugly R script)

R wrap up, Error, Sig Figs, Intro thermodynamics - Lec
Notes - Video (partial)

Th 3/18 Ligand Binding - Lec Notes - Video - R script

Tu 3/16



https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%202-2-21.pdf
https://umass-amherst.zoom.us/rec/share/Xq9xBOms2XCTBv_5nRQXLqV783iVYsr2yyQyyZorcueqPV6pnoqafsI5pnq3P07s.VpBrCIP62fYJmz8a
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%202-4-21.pdf
https://umass-amherst.zoom.us/rec/share/x7TuzEz5HTEHKo_IbrkWDhpFxkTNocI6ZfsQyjDJUhOFEvVEHgDznkwPCMUSKCIp.bpPtDusZN2IrnIex
https://cddemo.szialab.org/
http://cddemo.szialab.org/
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch%20728%20Lec%202-9-21.pdf
https://umass-amherst.zoom.us/rec/share/2nrITGioSXruJbwJhmNilDtKl9LOi5GdJWBJNj8hARGFg8nlwZixs2I5InolHco.KJbn3gNL0ftbNDLz
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%202-11-21.pdf
https://umass-amherst.zoom.us/rec/play/Od5MJ99MWui1JhBUj-zbWJP88Jbvn3yeqhudu5XocvIqCfh1xdT99qlHnknx3b9Ab87MHSI30R7LNEHP.ALj3YOEnTSC3uvKl?continueMode=true&_x_zm_rtaid=WbtTrTm4TLShv1GuCfScKw.1613430023598.9c62c4b1f5b7412debc5d4c61db4775e&_x_zm_rhtaid=111
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Static%20%20Dynamic%20Quenching.pdf
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%202-16-21.pdf
https://umass-amherst.zoom.us/rec/share/fpnFbnnpid_d1LKldV8futi6RL-2m9gHiC_AcZd-MzbiVeFCSIAkoLfgKjSQ-Bco.LHc6ZV1s5CwidQ44
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%202-18-21.pdf
https://umass-amherst.zoom.us/rec/share/SaS3uoTx7emOkroTXdjl8Lwute6FJ2uws1eMgXrGWlgj1zukNWHQ35yYj5k74OYP.Eof5IkP03R6w9tKv
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%202-23-21.pdf
https://umass-amherst.zoom.us/rec/share/6NXqSE0NOzkUGGupqH74ZAL3_uo20NrUkTBN6_FeHPLQdfJHQYwn25AgGHOOvFpJ.8wN6_oy2tYNkNZWV
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%202-25-21.pdf
https://umass-amherst.zoom.us/rec/share/0Dqi5n6JqZuZSPQpPZ0hJ0si9FwXk7WjcBre6hRksHztRpq7Ec9Ans3kiaRj27G1._9hd8JlWF-ZWNg1C
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%203-2-21.pdf
https://umass-amherst.zoom.us/rec/share/w88qzH8vQxnyBV0LV9eGIBIwYgFlZZsy7PxhGmF0kFVI5ALytFPeHhT-vJ5KRkJ2.3lHKVGGrhkHJqYw4
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%203-4-21.pdf
https://umass-amherst.zoom.us/rec/share/ZHNWVb1HuY70Liged2szWg5Qp_Fxx4agQ4tOQdZDl8aeVyi2caW6SZzd4Uxxk154.GPcWUcoZBdkw0dLt
https://resources.nanotempertech.com/prometheus/dls-easily-explained-what-it-tells-you-about-your-protein
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%203-9-21.pdf
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%203-11-21.pdf
https://umass-amherst.zoom.us/rec/share/WjYtubPCPIeFT7RDV4JnYF4chp-_E81KrbnemIfX3WYZ-kHdotPylr2rZ5y8cYm3.mqY50Mj90lQky1e9
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/RScriptExamples.txt
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%203-16-21.pdf
https://umass-amherst.zoom.us/rec/share/bWM1K2gsceq9MVMdNku9KakyQ-tkbpdbuonLreTYDBi8keO6Omh8Pjgb-3CNQHMg.I4aHgVXBlZUy23df
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%203-18-21.pdf
https://umass-amherst.zoom.us/rec/share/hsh6KRxaumGl2skIWr-1pfrBqaynN40bOOCms2jJlCnJsjsREXmn0JJ6LTuspE4a.xKTyzg-gnRQyByIn
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/R%20Examples%20Ligand%20Binding.txt
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4/1

4/6

4/8

4/13
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4/22

4/27
4/29
5/4

Kinetics - 21st Century approaches - Lec Notes - Video -
R script - Adv R script

Hands on with R - simulating kinetics - Lec Notes -
Video - R script - Inhib script

Cooperativity - Lec Notes - Video - Coop Review
Article - Adv Coop @ Wikipedial!

Isothermal Titration Calorimetry - Lec Notes - Video

Adv ITC & UV-Vis practicals - Lec Notes - Video - R
script

Surface Plasmon Resonance & Spectral Deconvolution -
Lec Notes - Video - R script

Bio-Layer Interferometry / Thermophoresis - Lec Notes -
Video

SEC-MALS - ZetaSizer - Doppler DLS - Lec Notes -
Video

Wednesday class schedule - No class

Kinetics Workshop: [ Transcr Term ], [Transcr Inhib ],
[ 2ColorReporter ] video

Guest Lecture - heliX dynamic biosensors - Video -

In-class Quiz; extras

Summary Wrap Up - Lec Notes - Video



https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%203-23-21.pdf
https://umass-amherst.zoom.us/rec/share/O4b6QzfAquyutDFJ0gDBwkUpdKxtG9mgnWnVmpKO6r6LzLyCb0sZuWeg4xjnCPjd.r1bb0MPC4JlCSgcj
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/IntegrRateEqs.txt
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/IntegrRateEqsAdv.txt
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%203-25-21.pdf
https://umass-amherst.zoom.us/rec/share/14FhU1_NSpJZ1GJ4uO5QnybkQpZ0oM_O6-dqKR2LbxES7ARG_beMPuQeRRYbRtGQ.4DIeVyq-2zBZ_0Pt
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/EnzymeKinetics.txt
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/EnzymeKineticsInhib.txt
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%203-30-21.pdf
https://umass-amherst.zoom.us/rec/share/G5J3r3DYzFPtjUf6VqoV08ik5HwGUsfn3ORC6wJHmDcBnODNu8A3I7ZzU4-0W64i.osOh9Z5wT0tpLQ95
https://doi.org/10.1371/journal.pcbi.1003106
https://en.wikipedia.org/wiki/Cooperative_binding
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%204-01-21.pdf
https://umass-amherst.zoom.us/rec/share/CXYfEteT15vNcHSOmOfn3or_E5uvUMWvs6OZshPnhRRD_U7niy2pQAmpNkO5AC3m.5DJ4wtrY1GgPI6ZZ
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%204-06-21.pdf
https://umass-amherst.zoom.us/rec/share/zOmMKWJq1PUttCFAK3Y5rn1vs_tr3xclTolWe6lmWaVS_FpOOtB5evI2j-t58dtA.f5X9k5UDvyTOQPp5
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/convolve.txt
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%204-08-21.pdf
https://umass-amherst.zoom.us/rec/share/LGlcxwPsQm-9RNbYpS3IrN1bp9054T0tqNTLB_9Cr_6vm6iQ4mKu_tfA6ipJedCQ.WwnLjVJsYACvckby
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/spectrum.txt
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%204-13-21.pdf
https://umass-amherst.zoom.us/rec/share/_QcspxHXeng9QjiUI4cFnlte6KcxGQhtwMboiBKaxmQu0shRpjK5PpJDVuYaVp7G.d3dBQNyoDQLHe-cr
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Ch728%20Lec%204-15-21.pdf
https://umass-amherst.zoom.us/rec/share/ZZiydiVmz_TZG2dD1DTMFxvMJ5v8FDKwCZgmuDhlWL6IPD65wSCewKftPVF86vRg.IQBuJFTTBevLLDvw
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Kinetics%20Projects%20-%20Hands%20On.pdf
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/TranscrTermination.txt?time=1619099891556
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/TranscriptionInhibition.txt?time=1619100456767
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/RNATwoColorReporter.txt?time=1619099957933
https://umass-amherst.zoom.us/rec/share/RokQRT5kWPkDUnhtFdSfS0tuMRtToe9jBr438mtdsMP_9jkdw620DSxesYDawRri.YwvfRbDZzixapypK
https://www.dynamic-biosensors.com/switchsense/
https://umass-amherst.zoom.us/rec/share/lsrc9jQzfQWDsdOOAfyP4yhXIIUJ7IV151yYyTFiM54nwmzYi2pa6mXerTg2xG5b.a85jvp26vesea5T7
https://moodle.umass.edu/pluginfile.php/3562786/course/section/842746/Chem%20728%20Recap.pdf
https://umass-amherst.zoom.us/rec/share/U2MHh-RoYgYOyRncC-MbDBfvsqIFyvnd4-_bgVVt4txSa1dO39F67KY5XzbqV8Gp.zrcqp0ndfBs7Nwsi

CHEM728 Physical Biochemistry Spring 2021

Tu/Th 8:30a-9:45a Moodle-provided Zoom session
Understanding chemical, physical, and biological properties of proteins and nucleic acids.
1) Thermodynamic and Kinetic behavior and experiment.

2) Spectroscopic tools for understanding structure (static and dynamic) and activity (binding,
catalysis, etc) of biopolymers.

The course will not (this year) include hands-on activities with, but will discuss in depth, the tools
available in the Institute for Applied Life Sciences (IALS) Biophysical Characterization Facility.

Instructor: Craig Martin (message through Moodle)

Prerequisites: BIOCHEM 423, 523, or CHEM 423, and CHEM 471 or 475.
* Or see Prof Martin


https://www.umass.edu/ials/biophysical-characterization
mailto:%20cmartin@chem.umass.edu

CHEM728 Physical Biochemistry Spring 2021

Tu/Th 8:30a-9:45a Moodle-provided Zoom session
Understanding chemical, physical, and biological properties of proteins and nucleic acids.
1) Thermodynamic and Kinetic behavior and experiment.

2) Spectroscopic tools for understanding structure (static and dynamic) and activity (binding,
catalysis, etc) of biopolymers.

The course will not (this year) include hands-on activities with, but will discuss in depth, the tools
available in the Institute for Applied Life Sciences (IALS) Biophysical Characterization Facility.

Instructor: Craig Martin (message through Moodle)

Prerequisites: BIOCHEM 423, 523, or CHEM 423, and CHEM 471 or 475.
* Or see Prof Martin

Textbooks / Lecture Notes

Modern Biophysical Chemistry, 2nd edition Binding and Kinetics for Molecular Biologists
e by Walla, Peter Jomo e by Goodrich, James A.; Kugel, Jennifer F. - Cold Spring Harbor Lab Press
e ISBN: 9783527337736 e ISBN: 9781621820796

e  Sadly, this book is out of print. Search eBay, perhaps?

Full lecture notes are available here in Moodle and should be sufficient for most of you.
Last year's notes are available here. This year's notes will be posted below as they become available (see
Syllabus, below)



https://www.umass.edu/ials/biophysical-characterization
mailto:%20cmartin@chem.umass.edu
https://umass.ecampus.com/course-list.asp?autocourselist=1&c=%7C3046767&s=139177&missing=#
https://umass.ecampus.com/course-list.asp?autocourselist=1&c=%7C3046767&s=139177&missing=#
https://moodle.umass.edu/pluginfile.php/2533715/course/section/611351/Chem%20728%20Lec%20Notes%20-%202018.pdf

CHEM728 Physical Biochemistry Spring 2021

Tu/Th 8:30a-9:45a Moodle-provided Zoom session
Understanding chemical, physical, and biological properties of proteins and nucleic acids.
1) Thermodynamic and Kinetic behavior and experiment.

2) Spectroscopic tools for understanding structure (static and dynamic) and activity (binding,
catalysis, etc) of biopolymers.

The course will not (this year) include hands-on activities with, but will discuss in depth, the tools
available in the Institute for Applied Life Sciences (IALS) Biophysical Characterization Facility.

Instructor: Craig Martin (message through Moodle)

Prerequisites: BIOCHEM 423, 523, or CHEM 423, and CHEM 471 or 475.
* Or see Prof Martin

R Statistical Package

Exams and homework/projects will require the use of the open source R statistical
package, freely available for Windows and Macs. As you learn and explore, please
post your experience to the R Moodle Forum for this course. Questions? Tips?
Anything...



https://www.umass.edu/ials/biophysical-characterization
mailto:%20cmartin@chem.umass.edu

CHEM728 Physical Biochemistry Spring 2021

Tu/Th 8:30a-9:45a Moodle-provided Zoom session
Understanding chemical, physical, and biological properties of proteins and nucleic acids.
1) Thermodynamic and Kinetic behavior and experiment.

2) Spectroscopic tools for understanding structure (static and dynamic) and activity (binding,
catalysis, etc) of biopolymers.

The course will not (this year) include hands-on activities with, but will discuss in depth, the tools
available in the Institute for Applied Life Sciences (IALS) Biophysical Characterization Facility.

Instructor: Craig Martin (message through Moodle)

Prerequisites: BIOCHEM 423, 523, or CHEM 423, and CHEM 471 or 475.
* Or see Prof Martin

Grading

30% Take Home Exam 1

30% Take Home Exam 2

10% In-class Quizzes

20% Homework / Projects

10% Class participation, including in Moodle Forums (required)


https://www.umass.edu/ials/biophysical-characterization
mailto:%20cmartin@chem.umass.edu

Survey Results
Spring 2021



widely used

good for simple things, business

good for simple things, business
ugly graphics, not for publication
UMass license, $$$ after

Survey Results
Spring 2021

Great graphics

Feature-rich

Windows only
Cluttered interface
UMass license, $$$ after

Wide user community
Great graphics

Feature-rich

UMass license, $$9$ after

programming interface

Great graphics

Wide user community
Open Source - Free!

Feature-rich

programming interface
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Survey Results

What else would you like to learn?

| wouldn't mind knowing more about crystallography and Cryo-EM
- Differential Scanning Calorimeter

- Basic ideas about curve fitting, Fourier transform, and spectral deconvolution

- Allosteric and cooperative binding
Some examples for real-life applications of the listed techniques would be nice.
Common mathematical methods to model molecular behavior.

N/A my main goal was to learn theory behind techniques | plan to use in my research.



Survey Results

Characteristics of a Great Course

Good slides and videos posted on the website to allow for looking back if technical difficulties occur

Access of relearning from available recordings

Creating a comfortable space for discussions
Discussion

Encouraging/opportunities for participation
Engaging

Lecture engagement

Interactive Clear presentation



Quantum Nature of Matter and Energy

Feb |,2021

What is electromagnetic radiation?



Basics

What spectroscopic difference(s) can
you predict about these molecules!?

N
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Electromagnetic Radiation




“Radiation”

Sunburn

Cell phones
Microwave ovens

WFCR



Electromagnetic Radiation

E=hv=hc
A

Plane-polarized radiation

Eexcited
Eexcited
Eground @
Eground
Classical: electrons can QM: electrons can have only

have any energy discrete (quantized) energies



Transition Dipole Moment

Why can’t a photon excite |s to 2s!?

Can three perpendicular photons excite Is to 2s!?
Why not!



Transition Dipole Moment



Transition Dipole Moment
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Transition Dipole Moment



Transition Dipole Moment

TT Ty axayor

Operator e

Final orbital l Initial orbital
N Iy

T Twaoxoyoz

—00 —O0 —CO



Transition Dipole Moment

[T%ﬁx% ax) (T%ﬁy% ij (Twzﬁzwl axl

T Twawoxoyoz

—00 —O0 —CO



Easy Calculus

Integration is Area Under the Curve
Cos Sin

Even Odd
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Easy Calculus

Integration is Area Under the Curve

Cos Sin
Even Odd
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Easy Calculus

Integration is Area Under the Curve

Cos Sin
Even Odd
* g

tttttttttt

Not Zero Zero



Transition Dipole Moment

Integrals the easy way

oo o0
Yoy, 0x Yol Y, 0x
*  even —° odd
Non-zero Zero
+0 +0 0

[ wwa][ wwa][ éi'/;;ﬁ;i/;;'sax]



Formaldehyde <y, v ,><vju (v i><¥o|p v,

Z

H///® y X Y z

C=0 g even even odd

>

S;: ) y

C= O&) odd even odd
H y

///C L) even odd even
HY '

—>» Hx odd even even

/1 Hy even odd even

T Hz even even odd



Formaldehyde: 1T to TT*
H/,,CLD ‘|: ) x v .
C_O even even odd
J Tt mdx [ TTuxTT*dy [ TTuxTT*dZ

z
Q &) eo o eee oeo
even even even
C — O odd even odd

JTtpyTr*dx [T, TT*dy [ TTu,TT*dZ

V4
H y €eeo €O ¢ oe€eo
///C @ even odd even even even

U x odd even even K K K
ﬂ Uy even odd even f m Léz-l;r dX f 1eT léz-lg d)’ f 1(;[ lcj)z-lg dZ
f U even even odd Ceven even
STOp|TT> = <T[u|Tm*> + <TT|uy|TT> + <TT[uTT">
allowed (eoco)(eee)(oeo) + (eeo) (oeo) + (eeo)(eee)
dx dy dz dx dy dz dx dy dz

Nnon-zero + +



<n|p|TT*>

disallowed

Formaldehyde: n to TT*

even

odd

even

odd

even

even

<n|[p| TT>

(eoo)

v

even

even

odd

even

odd

even

+

+

+

y4

odd

[ nuxTT*dx

€o0o

odd even

J npyTT*dx
eeo
odd

even

[ np TT*dx

€eo
even

even

odd

<n|py|TT*>

(ooe)

+

+

+

I nuxTdy [ nuxTT*dz
oee eeo

InpyTr*dy [ npyTT*dzZ
oo e eeo

even

I np r*dy [ np TT*dZ

oee eoo
even
<n|pe| TT*>

(eeo) (000)



Formaldehyde

0 R g
3
@)
=
H/,'C Tl 1
"
=0 L
HY D
TT to TT*

1

“forbidden”

n to TT*



Basics

What spectroscopic difference(s) can
you predict about these molecules!?
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Theory and Experiment

" Trp 280 nm 5050 M-! cm-!

P

OH

Tyr 274 nm 1440 M-I cm-!

Phe 257 nm 220 M-I cm-!

o

(Electronic) environment also matters!




Take home lesson

® Symmetry in a molecule (more correctly, in
an electronic orbital) allows the possibility
that transitions will be forbidden

® Even changes in the molecule’s (electronic)
environment can influence this.

® Hyperchromic effect



Time Dependent Schrodinger Equation

-----------------
------
"
.
.

(polarized light)

.
.
....
L] .
", .
-----
------------

Transition probability maximal when the
energy of the photon exactly matches
the difference in energy between the

ground and excited states

But that is not enough!




Electronic Spectra ll-ll

Feb 4,202



Time Dependent Schrodinger Equation
(polarized light)

--------
...........
LI "
. "
- ]
- .
. ]
. L]
“ L]

.......
------
. e

.

L] .
'} .

L] .
""saaanannt®

transition .
dipole HEnt
moment  intensity e

Energy Match

Transition probability maximal when the
energy of the photon exactly matches
the difference in energy between the

ground and excited states

But that is not enough!




Time Dependent Schrodinger Equation
(polarized light)

For energy exactly matching the transition energy:

For non-polarized light, integrate over all space:



Time Dependent Schrodinger Equation

For energy exactly matching the transition energy:

For non-polarized light, integrate over all space:

What does Mtion of light”

this look like?



Time Dependent Schrodinger Equation

For energy exactly matching the transition energy:

For non-polarized light, integrate over all space:

What does Mtion of light”

this look like?



Time Dependent Schrodinger Equation

For energy exactly matching the transition energy:

For non-polarized light, integrate over all space:

What does Mtion of light”

this look like?

“concentration of reagent”



Time Dependent Schrodinger Equation

“Probability of tranW
What does “concentration of light”

this look like?

“Probability of reaction” “concentration of reagent”



Absorption of Light Inducing a Transition




Absorption of Light Inducing a Transition

Boltzmann Equilibrium




log AG AG
2 100
1 »10
0 1
-1 0.1
-2 0.01
-3 % 0.001
-4 0.0001
-5 0.00001

I N

np/na
5.7964E-74
4.7459E-08
1.852E-01
8.4482E-01
9.8328E-01
9.9832E-01
9.9983E-01
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Absorption of Light Inducing a Transition

AE large 0
AE small infinity

But remember that as more systems go
up than down, the system will no longer
be at Boltzmann equilibrium

The populations will equalize

0

SATURATION



Absorption of Light Inducing a Transition
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Optical Abs NMR
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Peptide bond
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Linear dichroism

polarized molecules resulting
light absorb light LD spectrum
0
~0.02}
w Q -0.04}
» an
propagation 230 260 290 320
direction wavelength / nm
STp[TT*> = <TTp|TT*>  +  <TT|py|TT*>  +  <TT|p 77>
allowed (eoco)(eee)(oeo) + (eeo) (oeo) + (eeo)(eee)
dx dy dz dx dy dz dx dy dz
non-zero + +

Bullheller; Rodger, & Hirst (2007) Phys Chem Chem Phys 9,2020-2035


http://www.rsc.org/publishing/journals/CP/article.asp?doi=b615870f
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Circularly polarized light - preferential absorption

Experiment Theory

Circular dichroism of self-assembled gold nanohelices. Experimental (a
and c) and theoretical (b and d) CD spectra of left-handed (red
lines) and right-handed (blue lines) helices of nine gold
nanoparticles show characteristic bisignate signatures in the visible. ... c,
The CD signal increases owing to collective plasmonic enhancement by a
factor of 400 for assemblies of nanoparticles with |6-nm diameter,
rendering the noise in the spectra invisible (as in a). The peak position for
left-handed helices exhibits a red-shift from 524 nm to 545 nm.d,The
corresponding theoretical calculation predicts a 500-fold enhancement of
the signal and a peak shift from 523 nm to 534 nm.The CD spectra were
recorded at concentrations of nanohelices of 1.5 nM in aand 0.4 nM in
c.The insets in a and ¢ show TEM images of left-handed (red frame) and
right-handed (blue frame) nanohelices

DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response, (2012) Nature 483,311-314
Anton Kuzykl, Robert Schreiber, Zhiyuan Fan ,Glinther Pardatscherl, Eva-Maria Roller; Alexander Hogele, Friedrich C. Simmell, Alexander O. Govorov & Tim Lied|



Circularly polarized light

S _— ‘ff\/\‘ L g Ilm >
e
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The origin of protein CD is the chiral nature of the polypeptide backbone, whose electronic
transitions give rise to distinctive bands in the far UV. phenomenon of CD

The coupling of electric dipoles (TT = TT* electronic transition) in a repeating helical
structure leads to one in-phase combination with a net polarization parallel to the helix axis
and two out-of-phase combinations with a net polarization perpendicular to the axis.

The electric field of circularly polarized light causes a linear displacement of charge (along
the bond) in the TT = TT* transition. The magnetic field on the other hand induces a
circulation of charge.These two interactions occur at the same time, and the combination
of linear and circular displacement leads to a helical movement of electrons with which left
and right circularly polarized light interact differently, leading to the phenomenon of CD



Circularly polarized light
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Circular Dichroism - peptide bonds
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Bullheller; Rodger, & Hirst (2007) Phys Chem Chem Phys 9,2020-2035


http://www.rsc.org/publishing/journals/CP/article.asp?doi=b615870f

But first...

Zhaolin and Jian have a discussion going in our Moodle
Forum on the nature of the transition dipole moment

According to Schroedinger, the electron gets from state 2 to state
1 by a continuous transition through intermediate superposition
states. So halfway through our example, the electron is in a state
that is a superposition of the 2s and 2p states.

The transition dipole moment is then the actual dipole moment
evaluated for the superposition of states.

Note that the “position” of the electron is moving
(oscillating) in time - an oscillating dipole!

1s

2p

linear
combination
of the two

real part
imaginary part
¥o ol
L"fl |L-’r1|‘
¥ |2
//\ }r\
~

Wavefunction

I} Py
......

Probability

https://en.wikipedia.org/wiki/Transition_dipole_moment




But first...

Zhaolin and Jian have a discussion going in our Moodle
Forum on the nature of the transition dipole moment

real part
imaginary part
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¥ g 12
Note that 1s -> 2p transition is “forbidden” - why? 2p
4 I
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combination /\ JAN
of the two It
Wavefunction Pl.';).B?a'Bil‘i‘ty
https://en.wikipedia.org/wiki/Transition_dipole_moment




i From last time

Nathanael asked about circularly polarized light and
linearly polarized light. In fact, you can make one with

combinations of the other. See this Kahn Academy video
https://www.khanacademy.org/science/physics/light-waves/
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In the reel world

Where have you used @@

circular dichroism

outside of science? @@

3D movies use circular polarization and left vs right
absorbing chromophores!!



Circular Dichroism - peptide bonds
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Circular Dichroism - peptide bonds
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Circular Dichroism - peptide bonds
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Traditional approaches for
discerning structure from CD
include using spectral “basis
sets.” The fit involves adding
together varying ratios of each
contributor until the summed
spectrum best fits the
experimental spectrum.

Simple fits might include only
2-3 contributing spectra,
others might use more
complex basis sets (but see
warning to come about doing
so!).
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On-line Tools

Predict 2° structure from spectra
DICHROWEB  http://www.cryst.bbk.ac.uk/cdweb

Predict spectra from 3D structure
DICHROCalc http://comp.chem.nottingham.ac.uk/dichrocalc/



http://dichroweb.cryst.bbk.ac.uk/html/home.shtml/
http://www.cryst.bbk.ac.uk/cdweb
http://comp.chem.nottingham.ac.uk/dichrocalc/
http://www.cryst.bbk.ac.uk/cdweb
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Not so simple

Hemoglobin CD Data
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CD - things to be careful of

There is the possibility that if used in a blackbox manner, users can produce less than ideal (or even
erroneous) conclusions from CD. Thus a number of precautions need to be considered in the use and
interpretation of the results.

1. The amount of data must be sufficient to solve for the desired number of secondary structure
components. Data that only extends to 200 nm contains at most two eigenvectors, and hence the
results should only be interpreted in terms of two components (i.e., how much is helix and how much
is not helix). Any interpretation of such data that attempts to deconvolute into more components
than these will be an over-interpretation of the data.

2. A low value for the NRMSD or any other goodness-of-fit parameter does not always indicate it
represents a correct solution. A low NRMSD value (0.1) is a necessary but not sufficient condition for
accuracy in secondary structure determination. However a high value is a good indication that either
the analysis has gone wrong (often because the magnitude of the spectrum is incorrect) or the
reference database is inappropriate for the characteristics of the protein being analysed. It is also
important to note that some algorithms, notably CDSSTR, nearly always produce the lowest NRMSD
due to the way they fit the data, but they very often are not the most correct solution.[36]

3. Reference databases derived from globular soluble proteins are not appropriate for the analysis of
proteins (or peptides) in nonaqueous solutions.[38] (4) It is absolutely essential to have precisely
correct concentration measurements (not just estimates from colorimetric assays) and an accurate
measurement of the cell pathlength (the values cited by the manufacturers, especially for very short
pathlengths, can err by 30% or more).[42] The consequence of concentration and pathlength errors
is that the magnitude of the spectrum produced will err by a corresponding amount and result in
incorrect analyses.

Whitmore & Wallace (2007) Biopolymers 89, 392-400


http://www3.interscience.wiley.com/cgi-bin/fulltext/116323652/main.html,ftx_abs#BIB36
http://www3.interscience.wiley.com/cgi-bin/fulltext/116323652/main.html,ftx_abs#BIB38
http://www3.interscience.wiley.com/cgi-bin/fulltext/116323652/main.html,ftx_abs#BIB42
http://onlinelibrary.wiley.com/doi/10.1002/bip.20853/full

Detect conformational change!?

Large structural change, but
much of it is rigid body motion
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Much better for local helix to coil
transition in a relatively small protein



Structures and abbreviations

Absmax = 300 nm

2-aminopurine dimer

Johnson N. P. et.al. PNAS 2004;101:3426-3431

©2004 by National Academy of Sciences


http://www.pnas.org/content/101/10/3426.full

CD Spectra of ds oligonucleotides containing AP dimer

DNA DNA
(no 2AP)  (2AP-2AP)

CD Spectra of ds oligonucleotides containing AP dimer. (a) CD per mol nucleotide residues. (b) CD per mol
AP residues. Oligonucleotides: -—-—- (dark solid line), —=—-XX-- (dashed line), and --XX-- & (light solid line).

Johnson N. P. et.al. PNAS 2004;101:3426-3431

©2004 by National Academy of Sciences


http://www.pnas.org/content/101/10/3426.full

CD Spectra of ds oligonucleotides containing AP

A number of experiments were carried out to further characterize the 328-nm peak of the CD spectra.
Double-stranded oligonucleotides containing a single AP residue (--X--) or two AP residues separated by an
intervening base (--XGX--), showed similar CD spectra above 300 nm (Fig. 4). These spectra had a single peak
with maximum intensity at 320 nm, differing markedly from the CD spectrum of the --XX-- species (Fig. 3).

\

CD Spectra of ds oligonucleotideg containing AP. (a) CD per mol
Oligonucleotides: —~-————---

pucleotide residues. (b) CD per mol AP residues.
(triangles), —-X-- (squares), and --XGX-- (circles).

Johnson N. P. et.al. PNAS 2004;101:3426-3431

©2004 by National Academy of Sciences


http://www.pnas.org/content/101/10/3426.full#F4
http://www.pnas.org/content/101/10/3426.full#F3
http://www.pnas.org/content/101/10/3426.full

Structure of a guanine-PC base pair (a), and sequences and nomenclature of ss oligonucleotides
used in this study (b). ssPCC is the complementary strand used to form the ds oligonucleotides
dsPCO0, dsPC1, dsPC2, dsPC1A, and dsPC1B.

a CH,
N pyrrolo-dC
dG Ny TN
/N\/(_<N_ " how is this
"0 Nem different from dC?
—(N- . O>_ \... e e t O C
/ =
H
G PC
D Name Sequence
ssPCO 5’-GCC CAA CCA TAC CCG-3
ssPC1 5’-GCC CAA (PO)CA TAC CCG-3°

------
il .

ssPC2 5’-GCC CAA:(PC)( PC)A TAC CCG-3’

.
---------

ssPC1A 5’-GCC (PC)AA C(PC)A TAC CCG-3’
ssPC1B 5’-GCC CAA C(PC)A TA(PC) CCG-3’

ssPCC 3’-CGG GTT GGT ATG GGC-5°

Johnson N. P. et.al. PNAS 2005;102:7169-7173

©2005 by National Academy of Sciences


http://www.pnas.org/content/102/20/7169

Low-energy CD spectra of 7 uM ss oligonucleotide and 3.5 yM ds oligonucleotides
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Johnson N. P. et.al. PNAS 2005;102:7169-7173

| Academy of Sciences


http://www.pnas.org/content/102/20/7169

Datta et al, J Mol Biol 360, 800-813 (2006)


http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WK7-4K425F6-4&_user=1516330&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000053443&_version=1&_urlVersion=0&_userid=1516330&md5=4cac3e66d81d00f39204acb2b90289ea

Circular Dichroism Recap - Practical Stuff

e (Can try to estimate 2° structure of protein whose
structure is not known.

e Two approaches
e Fit to 2 or more basis sets (be careful!)
e number of sets fit
® using appropriate basis sets
e Fit to ab initio calculations (be careful)
¢ Not done so much anymore...

e (Can measure conformational changes
e Mostly empirical (be careful)
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Electronic Energy Levels

Use ethylene (ethene) as a simple model

CH;=CH;
orbital T —— Al_ 41*_

orbital TT % + +
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Electronic Energy Levels

Use ethylene (ethene) as a simple model

CH>;=CH;

m— 4 4 So = S

Allowed, subject to

“+oco oo oo

[ | [w.nw,0x0y0z

s e
S|

So T) So = T

- . ) Forbidden - why?
singlet singlet triplet
( 8 ) ( 8 ) ( P ) Requires TWO transitions:

(ground) (excited) (excited) change in orbital AND spin flip

Remember this for later



Why is fluorescence emission always at longer
wavelength than the exciting absorbance?

(Stokes shift)
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Use ethylene (ethene) as a simple model
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T 4
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But at T > OK, bonds vibrate!

Bonds lengths oscillate in length!

Higher excited vibrational states
vibrate with bigger amplitude

A

Energy
Z~—>. vibronic levels

Bond length
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Use ethylene (ethene) as a simple model

CH>;=CH;

What can we say about bond lengths!?

T —— Al— A

L —~4— \

S|
So s, \;’?S—o
(singlet) (singlet) Z <~ vibronic levels

— >
(ground) (excited) / \ Bond length
2

Double bond Single bond Bond order = . Bondorder=1
Bond length = 1.3 A Bond length = 1.5 A
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Use ethylene (ethene) as a simple model

CH>;=CH;

What can we say about bond lengths!?
T —— Al— So - short bond

S| - long bond
(i
But nuclei move much
Ll | * | \ more slowly than electrons!
So S|
S|
(singlet) (singlet) Energy
So
(ground) (excited)
Z<~—. vibronic levels
Double bond Single bond — >

Bond length
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Use ethylene (ethene) as a simple model

A
| C H gl — C H pl T —l—
T % _T_
So S
(singlet) (singlet)
(ground) (excited)
Double bond Single bond
S|
Energy
A . .
SO l S | Vibronic levels
SO Vibronic levels
>

Bond length
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Use ethylene (ethene) as a simple model

t CH,=CH; ™

_l_
4

So S
(singlet) (singlet)
(ground) (excited)
Double bond Single bond
S|
Energy
SO 7 S Vibronic levels
l |

S Vibronic levels
0

Why is fluorescence emission always at longer
wavelength than the exciting absorbance!?

Bond length (Stokes shift)
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Use ethylene (ethene) as a simple model

t CH,=CH; ™

_l_
4

So S|
(singlet) (singlet)
(ground) (excited)
Double bond Single bond
Energy
A Vibronic levels

S Vibronic levels
0

Why is fluorescence emission always at longer
wavelength than the exciting absorbance!?

Bond length (Stokes shift)




log AG AG
2 100
1 »10
0 1
-1 0.1
-2 0.01
-3 0.001
-4 0.0001

-5 0.00001

I N

np/na
5.7964E-74
4.7459E-08
1.852E-01
8.4482E-01
9.8328E-01
9.9832E-01
9.9983E-01
9.9998E-01
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What goes up, must come down
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What goes up, must come down K, [So] — {kF +k. }[81]
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What goes up, must come down K, [So] — {kF +k. }[81]

# molecs excited
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levels —— 1010 S* need to know kabs, [So], or [Si]
So 2
What goes up, must come down K, [So] = {kF +k. }[81]
# molecs excited # excited states decayed
Fluorescence  (# photons emittecy _ ke[S, ] _ K
quantum yield: (# photons absorbed) {kF +k, f[S/] {kF +k |
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—> Radiative (photon)

----> Nonradiative (phonon/lattice vibrations)
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Vibronic
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—> Radiative (photon)

----> Nonradiative (phonon/lattice vibrations)
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What goes up, must come down  k [SO] = {kF + k. + kq [Q] + k. }[81]

# molecs excited # excited states decayed
Fluorescence  (# photons emittecy _ ke
quantum yield: (# photons absorbed ) {kF +k +k,[Q]+ kis}
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Fluorescence Quenching
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Kic o Interactions with solvent/neighbor (environment, more broadly)
o Dissipation through internal vibrational modes
o increases with increasing temperature (usually)
o practical alert: fluorescence can depend on temperature!!
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Fluorescence Quenching
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o Collisional deactivation

o Electron transfer

S* + Q S + QVib/kin

S +Q——=S"+Q°
S +Q——S +Q°"

o Resonance energy transfer S +Q——S+Q’
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Fluorescence Quenching
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= Collisional (dynamic) assumes that
S 3 interaction between fluorophore and
| Kr ‘Kic guencher is purely “collisional” - two
o o ig non-interacting billiard balls
g4 |f L FkaQ
T i1z I 4ox
'y :_ :
: : Increasing collision freq
So—£ v v —
E
F
[Q]=0
F, @ k
r=— 5 =1+ ———[Q]=1+ K, [Q]
F CI)F k. +k, .
dynamic [Q]
hv * k[Q] . . TIRIIE 1)
A > A >A+(Q + heat  collisional - “billiard balls
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—— Collisional (dynamic) assumes that
S 3 interaction between fluorophore and
| ke ikic quencher is purely “collisional” - two
o o te non-interacting billiard balls
sl 2 s 12 EBikqlQ]
= iz i Aox
'y :_ :
SO »' \ 4 \ 4
K « :
A+Qz=—AQ—>AQ——> AQ + heat static
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= Collisional (dynamic) assumes that
S 3 interaction between fluorophore and
| Kr ‘Kic guencher is purely “collisional” - two
o o ig non-interacting billiard balls
ﬁ g g ié %: O S* 4+ Q S+ Qvib/kin
G2 s g 2 qu[Q] Binding (static) assumes that the
- £ = guencher binds the fluorophore in its
,'y ground state and that the bound state
So—£ v v has different relaxation properties.

Increasing [complex]
—
Increasing collision freq
—_—

Dynamic + Static

Dynamic
or
Static

% (1 + KSV[Q])(l +Kp [Q])

dynamic static

[Q]
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Increasing [complex]
—

Increasing collision freq
—

Dynamic
or
Static

[Q]

Collisional (dynamic) assumes that

interaction between fluorophore and
guencher is purely “collisional” - two
non-interacting billiard balls

S* + Q S + Qvib/kin

Ksv usually increases with temperature

Binding (static) assumes that the

qguencher binds the fluorophore in its
ground state and that the bound state
has different relaxation properties.

Kb usually decreases with temperature
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Quantum Yield
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(fluorescence decay)
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" #photons absorbed k. + k. + k [Q]+k,
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Fluorescence Lifetimes

FIuorophore Lifetime (ns) Excitation Max | Emission Max Solvent
[nm] [nm]
ATTO 655 3.6 655 690 | Water
Acridine Orange 2.0 500 530 | PBpH 7.8
Alexa Fluor 488 4.1 494 519 | PBpH 7.4
Alexa Fluor 647 1.0 651 672 | Water
BODIPY FL 5.7 502 510 | Methanol
Coumarin 6 2.5 460 505 | Ethanol
CY3B 2.8 558 572 | PBS
CY3 0.3 548 562 | PBS
CY5 1.0 646 664 | PBS
Fluorescein 4.0 495 517 | PBpH 7.5
Oregon Green 488 4.1 493 520 | PBpH9
Ru(bpy)2(dcpby)[PFe]2 375 458 650 | Water
Pyrene > 100 341 376 | Water
Indocyanine Green 0.52 780 820 | Water
Rhodamine B 1.68 562 583 | PB7.8
Fluorescence T. = kF

Lifetime 0 ](F + ](I,C + ](q [Q] + k.

18
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What if multiple fluorophores with
different lifetime parameters?

Better
Time resolved fluorescence

i:H'Toko[Q]:1_|'KSV[Q]

T

Excite a population, then turn off hv

[Sl ]t - [Sl]t=0 e_kwtt
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FO
Exponential decay

If kiot is @ mix of population, decay
will be multiexponential
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Phase Modulated Time Resolved Fluorescence

Modulate intensity of excitation light
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Phase Modulated Time Resolved Fluorescence

Modulate intensity of excitation light

Ifluor
Iexcit



Phase Modulated Time Resolved Fluorescence

Modulate intensity of excitation light

—>E f E «— tan f =
W= freq of modulation of I__,

: , . ]y 1 For simple system:
fractional modulation of emission A f—t =t
m = =t =1,

A _\/1+W@

* fractional modulation of excitation
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Light emitted in fluorescence is
subject to (almost) the same rules
as that absorbed initially

Same polarization rules
(but any propagation direction)
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Light emitted in fluorescence is
subject to (almost) the same rules
as that absorbed initially

Same polarization rules
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Light emitted in fluorescence is
subject to (almost) the same rules
as that absorbed initially

Same polarization rules
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Fluorescence Resonance Energy Transfer

A particular type of quenching
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Fluorescence Resonance Energy Transfer
A particular type of quenching
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Fluorescence Resonance Energy Transfer
A particular type of quenching
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Fluorescence Resonance Energy Transfer
A particular type of quenching
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Fluorescence Resonance Energy Transfer
A particular type of quenching

Donor A

0
oscillating / ACCG ptor

transition dipole
oscillating
transition dipole
’\ "

no photon involved
induced dipole-dipole interaction



Fluorescence Resonance Energy Transfer
A particular type of quenching

Donor
z =
~ R : A,

Acceptor
A\ P

includes angular dependencies

= 2/3 for very rapid relative tumbling



Fluorescence Resonance Energy Transfer
A particular type of quenching
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Fluorescence Resonance Energy Transfer

Donor A particular type of quenching

Acceptor
==y P

- L,
D, — transition *)\ A,

transition
dipole

Important: there are no
photons involved here!!!

Dependencies:

dipole

Overlap integral

energy match
2 favorable angle

RO “short” distance



Fluorescence Resonance Energy Transfer
A particular type of quenching

Dl
Donor
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Acceptor
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FRET
efficiency

lifetime of the donor in the
absence of fluor energy transfer

includes angular dependencies

= 2/3 for very rapid relative tumbling
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Fluorescence Resonance Energy Transfer

Donor A particular type of quenching

Acceptor
==y P

- L,
D, — "\ A,

\ Overlap integral Refractive index of

intervening medium
/(polarizability)
Angular Dependence /

(0-4; 2/3 for full averaging)

Quantum yield of donor
(related to D+ lifetime)



Fluorescence Resonance Energy Transfer

Donor

D, F— /L

A particular type of quenching
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Fluorescence Resonance Energy Transfer

Donor A particular type of quenching
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Fluorescence Resonance Energy Transfer
A particular type of quenching
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Fluorescence Resonance Energy Transfer
A particular type of quenching
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Fluorescence Resonance Energy Transfer

A particular type of quenching

Donor
D, Y — / Acceptor
— R F== A,
Do — *)\ = AO
Measuring absolute distances!?
- difficult
- burden: knowing Ro
A
Overtap Quantun i Measuring changes in distances!?
Angular (related to - excellent, particularly if
(ODEVF;%:%E?J” N O']'cfet'me) accuracy not important

intervening medium
(polarizability)



FRET angle probe

Spinach

Mango

Development of a genetically encodable FRET system using fluorescent RNA aptamers
Mette D. E. Jepsen, ... & Ebbe S. Andersen, Nature Communications 9, 18 (2018) do0i:10.1038/s41467-017-02435-x



FRET angle probe

Spinach stem 17 bp

Spinach

Mango

Spinach stem 16 bp

Development of a genetically encodable FRET system using fluorescent RNA aptamers
Mette D. E. Jepsen, ... & Ebbe S. Andersen, Nature Communications 9, 18 (2018) do0i:10.1038/s41467-017-02435-x



A little knowledge...

What’s wrong with this?

Dipole moment calculation

The dipole moment of DFHBI-1T was
calculated using the Marvin software suite
(version 15.10.19) and the Calculator Plugin
developed by ChemAxon (http://
www.chemaxon.com/). The chemical structure
of DFHBI-1T was drawn in MarvinSketch, and
the protonation state of the molecule was
determined at pH 7.8 by using the pKa
Calculator Plugin. The dipole moment of the
most abundant DFHBI-1T microspecies (70.4%
at pH 7.8) was calculated by using the Dipole
Moment Calculator Plugin. The total dipole
moment of DFHBI-1T was visualized as a
vector expressed in the principal axis frame.


http://www.chemaxon.com/
http://www.chemaxon.com/

Checking in with Wikipedia

“FRET is analogous to near-field communication, in that
the radius of interaction is much smaller than the
wavelength of light emitted. In the near-field region, the
excited chromophore emits a virtual photon that is
instantly absorbed by a receiving chromophore....”

“...Theshotons are undetectable, since their

existence violates the conservation of energy and momentum,
and hence FRET is known as a radiationless mechanism”

In physics, a virtual particle is a transient quantum fluctuation that exhibits some of the
characteristics of an ordinary particle, while having its existence limited by the uncertainty principle

Virtual photon # photon


https://en.wikipedia.org/wiki/Near_and_far_field
https://en.wikipedia.org/wiki/Light
https://en.wikipedia.org/wiki/Virtual_photon
https://en.wikipedia.org/wiki/Physics
https://en.wikipedia.org/wiki/Quantum_fluctuation
https://en.wikipedia.org/wiki/Uncertainty_principle

Determining Fluorescence Quantum Yield

| D J — photons emitted
photons absorbed
D ® proportional to I/A
0

Determine relative to a known
reference (R) standard

FRET y ,
efficiency «_ /A 1
D= ~D,
R

I/
a




Determining Fluorescence Quantum Yield

D, I——

D,

Determine relative to a known
reference (R) standard

[ = Integrated Fluor Emmission Intensity
A = Absorbance at Abs Max

n = refractive index of medium

A

For a slightly more complex, but more
accurate approach, see this link


https://www.perkinelmer.com/lab-solutions/resources/docs/APP_Determination_of_Relative_FluorescenceQuantum_Yields_using_FL6500_Fluorescence_Spect.pdf

Fluorescence Resonance Energy Transfer

Donor A particular type of quenching

Acceptor
==y P

- L,
D, — "\ A,

Measuring absolute distances!?

- difficult

- burden: knowing Ro
In the measured system

\ Measuring changes in distances?

- better, particularly if accuracy
SN not important




Fluorescence Resonance Energy Transfer
A particular type of quenching

Donor
D A— / Acceptor
=T —_—
R F== A,
D,t— J\ == A,
Measuring absolute distances!?
- difficult
- burden: knowing Ro
A
Overlap : . . .
integral Quantum vield Measuring changes in distances!?
Angul (related to _ . .
Depgﬂlé:r:ce ifotime) bett.er, particularly if accuracy
(04 23 for full - not important
averaging) Refractive index of
intervening medium BUT. .

(polarizability)



Determining FRET Efficiency

f : Al

Kic | kr Ker

A

v - < AO

O
A4

Use a separate control OR
Photobleach acceptor



Determining FRET Efficiency

Measure quantum yield of donor

A A

.
5 AO



Determining FRET Efficiency

Measure quantum yield of donor

Acceptor

Donor
Emission

Absorption

Acceptor
Emission

N

A (nm)

Acceptor

Donor Absorption

Emission

Acceptor
Emission

AN

A (nm)



Determining Distances / Distance Changes

Caveats

* Angular dependence (k?2)
e Environment dependence (J, ¢p)
* Distance is a (complicated) average
* Probe is large, linkages can be long
e Construct complications

- Free fluorophores

- Donors without partner acceptors

- Acceptors without partner donors



Determining Distances / Distance Changes
Common probes and Caveats

e Common probes m
- GFP/ YFP, etc o % j;(i

Read more..

Genetically fuse onto
other proteins.
Provides an in vivo
fluorescent tag

Fluorophore chemically
“matures” from amino
acid precursors

View from Proteopedia


http://www.proteopedia.org/wiki/index.php/Green_Fluorescent_Protein
http://www.cryst.bbk.ac.uk/PPS2/projects/jonda/chromoph.htm

Determining Distances / Distance Changes
Common probes and Caveats

.....

View from Proteopedia Nature methods | VOL.9 NO.10 | OCTOBER 2012 | 1005


http://www.proteopedia.org/wiki/index.php/Green_Fluorescent_Protein

Determining Distances / Distance Changes

Common probes

e Common probes
- GFP/ YFP, etc

- Rhodamine family Rhodamine

- Fluorescein family

P : L . I
O O FIuoreséein
/ Rhodamine 6G isothiocyanate
O © Other derivatives: (FITC)

. Texas Red, TRITC
Tetramethyl Rhodamine Other derivatives:

Oregon Green, Tokyo Green
(TAMRA) S Y




Determining Distances / Distance Changes

Common probes

* Common probes
- GFP/ YFP, etc

- Rhodamine family

- Fluorescein family sj(
Alexa Fluor 488 Alexa Fluor 594

- Alexa family

Molecular Probes, Inc.
(Invitrogen)

less pH-sensitive & more photostable
than fluorescein, rhodamine, etc


http://www.invitrogen.com/site/us/en/home/References/Molecular-Probes-The-Handbook/Fluorophores-and-Their-Amine-Reactive-Derivatives/Alexa-Fluor-Dyes-Spanning-the-Visible-and-Infrared-Spectrum.html

Determining Distances / Distance Changes

Common probes

e Common probes
- GFP/ YFP, etc
- Rhodamine family

- Fluorescein family

- Alexa family
- Cy3, Cyb family



Determining Distances / Distance Changes

Common probes

e Common probes
- GFP/ YFP, etc
- Rhodamine family

- Fluorescein family

- Alexa family
- Cy3, Cyb family

Molecular Probes, Inc.
(Invitrogen)

less pH-sensitive & more photostable
than fluorescein, rhodamine, etc


http://www.invitrogen.com/site/us/en/home/References/Molecular-Probes-The-Handbook/Fluorophores-and-Their-Amine-Reactive-Derivatives/Alexa-Fluor-Dyes-Spanning-the-Visible-and-Infrared-Spectrum.html

Determining Distances / Distance Changes

Common probes

e Common probes O / 13 O
- GFP/ YFP, etc NFoZ2 N
T \R R/ Exc = 550 nm
- Spinach, Broccoli o3 Em = 570 nm

- Rhodamine fami Yy 1 3 5
- Fluorescein family O N e N O

-Aexa fam”y T \ / Exc =649 nm

R Cy5 R Em =670 nm
- Cy3, Cy5 family Which is donor?

More in family: Cy3.5, Cy5.5, et al.



Determining Distances / Distance Changes

Common probes

I_ \ / Exc = 550 nm

R R
Em =570 nm

Cy3
1 3 5}
) Y Ve
O N/—I— 2 4 N O

T \ / Exc = 649 nm

R Cy5 R Em =670 nm

Which is donor?



Determining Distances / Distance Changes



Determining Distances / Distance Changes



Molecular Beacons
a simple application of FRET quenching

Quenched T c

O00>»0
| I B DR B |
OO0~ 0

Donor Acceptor

(non-fluorescent) EDANS  DABCYL

(aka “Quencher”)

I:r:;'48,f'\,’\,/~,.f\/\/\,"‘5"'\
0,0 ,:‘\/\/\/\./

\
/


http://www.molecular-beacons.org/Introduction.html

Molecular Beacons
a simple application of FRET quenching

Quenched

Huge number of applications:

* Gene probing
e Real Time PCR
* Molecular switch sensors

Advantages

* Fluorescence - very sensitive!

* low background

* always better to detect signal ON
* [nexpensive

O00>»0
| ' ' J '
OO0~ 0

\

':'“J‘.8{,\/;Y\_W..}-.\
L \ A NAAAS
O

EDANS DABCYL


http://www.molecular-beacons.org/Introduction.html

Molecular Beacons
a simple application of FRET quenching

* Gene probe diagnostics (muliiplexing)

ah A
T c
T
G
A T

Agoc®

-T
C
G
c

\
/

HOY Al s IR
. A S O000>»

EDANS DABCYL


http://www.molecular-beacons.org/Introduction.html

Fluorescence emission

Molecular Beacons
a simple application of FRET quenching

* Gene probe diagnostics (muliiplexing)
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http://www.molecular-beacons.org/Introduction.html

Recap - Transition Dipole Moment

[Tl/fzﬁxt/fl Bx) (T%ﬁy% ij (Twzﬁzwl axl

T Twawoxoyor

—00 —O0 —CO



Transition Dipole Moment

Integrals the easy way

oo o0
Yoy, 0x Yol Y, 0x
*  even —° odd
} }
Non-zero Zero
+0 0 0

[ wwa]( wwa][ svf;ﬁ;@&;sax]



Formaldehyde: 1T to TT*
H/,,CLD ‘|: ) x v .
C_O even even odd
J Tt mdx [ TTuxTT*dy [ TTuxTT*dZ

z
Q &) eo o eee oeo
even even even
C — O odd even odd

JTtpyTr*dx [T, TT*dy [ TTu,TT*dZ

V4
H y €eeo €O ¢ oe€eo
///C @ even odd even even even

U x odd even even K K K
ﬂ Uy even odd even f -2- Léz-l;r dX f 1eT léz-lg d)’ f 1(;[ lcj)z-lg dZ
f U even even odd even even
STOp|TT> = <T[u|Tm*> + <TT|uy|TT> + <TT[uTT">
allowed (eoco)(eee)(oeo) + (eeo) (oeo) + (eeo)(eee)
dx dy dz dx dy dz dx dy dz

Nnon-zero + +



Fluorescence Anisotropy

(fluorescence polarization)

A_ IP_IJ‘ /P=IP_IL\
I+ 21, L)

rigid

3 3 emission A > O

T TT TT emission) IJ_ = O

1 4aton




Fluorescence Anisotropy

(fluorescence polarization)

A IL,-1,
I+ 21,
rigid
?\/
=1
N —>

1 4aton



Fluorescence Anisotropy

(fluorescence polarization)

A -1,
I+ 21,

rigid

? \/ emission 1 IP >0 @> A >0
A =1 N

> > For both absorption and
f — emission IJ- O emission have to integrate cos?

and sin2 functions over all angles
14aton

photoselection



Fluorescence Anisotropy

(fluorescence polarization)

N
I+ 21,
fluid
?\/
=1
N —>

1 4aton

photoselection



Fluorescence Anisotropy

(fluorescence polarization)

N
I+ 21,
fluid
| /
4
«

1 4aton

photoselection

random rotation



Fluorescence Anisotropy

(fluorescence polarization)

A= Iip+ 2Ii
fluid
i\ </ ge— 1 I,>0
N A=0
N —> oo, © I, >0

/ Full random reorientation, A=0
1 excitation



Fluorescence Anisotropy

(fluorescence polarization)

But walit...

This all assumes that the absorption
and emission transition dipole
moments are parallel (in an ideal
world, they are, but we don't live in
an ideal world)

The details can be more
complicated, but the basic story
remains the same

-1,
CL+2I,

>A>0
N

For both absorption and
emission have to integrate cos?
and sin2 functions over all angles



Fluorescence Anisotropy, Single Molecule, TIRF

February 23,2021



Fluorescence

p Excitation
light
al! freqst >
all orientations A)iffraction grating

(prism)



Fluorescence

A
slit — 4 Emission
\ monochrometer
—> —
Rotate monochrometers to
A choose wavelength (center)
slit — 4 Excitation
ight monochrometer

all fregs
all orientations )/



Fluorescence

Larger slit
* more light!
* more wavelengths

A

Excitation slit — 4

"/

A

slit — 4 Emission

\ monochrometer

- 7

Excitation  Emission
bandpass  bandpass

— <« — <«
N
P
2 Absorbance
Q
£ Emission
/ \'\
[ [ [ [ [
500 550 600 650 700

wavelength (nm)



Fluorescence

Larger slit
* more light!
* more wavelengths

A

Excitation slit — 4

"/

slit

—_—

Intensity

A

_A

Emission

\ monochrometer

—_—

Excitation  Emission

bandpass  bandpass

— «— <

Absorbance
Emission
I I I I I

500 550 600 650 700

wavelength (nm)



bandpass

— <4

Fluorescence ~

Larger slit
* more light!

* more wavelengths 1
slit — 4 Emission
monochrometer

But excitation is MUCH
a ’ brighter than emission!

T Excitation Emission

bandpass bandpass

— -« — -«

A /N

Excitation slit — 4

N

/ T -
> / I I I I I
500 550 600 650 700

wavelength (nm)

Absorbance

Intensity

Emission




bandpass

— <4

Fluorescence ~

Larger slit
* more light!

* more wavelengths 1
slit — Emission
monochrometer

But excitation is MUCH
a ’ brighter than emission!

T Excitation Emission

bandpass bandpass

— -« — -«

A /N

Excitation slit — 4

Absorbance

Intensity

Emission

< / | | | T | |
500 550 600 650 700

wavelength (nm)




bandpass

Fluorescence ~
Questions!
Larger slit
* more light!
* more wavelengths 1
slit — 4 Emission
\ monochrometer
But excitation is MUCH
a ’ brighter than emission!
T Excitation Emission
bandpass bandpass
A
Excitation slit — 4 z N
E Emission
T

> / [ | | | |
500 550 600 650 700

wavelength (nm)



Fluorescence Anisotropy

(fluorescence polarization)

y oL
I+ 21,
fluid
T \-/ emission 1 IP > O
Y =1
\ —> emission) IJ_ > O

/ Full random reorientation, A=0
1 excitation



Fluorescence Anisotropy

(fluorescence polarization)

Aparallel A -1,

A =
I+ 21,

_A

- \|/

—

monochromatic, single orientation

excitation O
polarizing filter
A

monochromatic, all orientations

_A

light

all fregs
all orientations )/




Fluorescence Anisotropy

(fluorescence polarization)

Aperpendicular A -1,

A =
I+ 21,

_A

PerpendicuI;\
. O —Y

monochromatic, single orientation

excitation O
polarizing filter
A

monochromatic, all orientations

_A

light

all fregs
all orientations )/




Fluorescence Anisotropy

(experimental setup)

L-format
IP - IJ_
emission =
polarizing filter Lovs I I+ 21,
alternate: P L4

parallel vs perpendicular
~0—

monochromatic, single orientation

excitation
polarizing filter O

monochromatic, all orientations

A

>

_A

light
all freqgs <
all orientations




Fluorescence Anisotropy

(fluorescence polarization)

T-format

I, I, -1,

: 420,

_A

A

\/ parallel perpendicular \/
O

\4—4— —

excitation O
polarizing filter
A

monochromatic, single orientation

monochromatic, all orientations

_A

light

all fregs
all orientations )/




Fluorescence Anisotropy

(fluorescence polarization)

Randomization/rotation - how fast is _ -1,
fast enough? I, +2I,

Time scale is relative to how long the
molecules stays excited before
emitting - their fluorescence lifetimes.

Typically 1-100 nsec

Small protein - reasonable rotation ’\I ol perpendcua\V

Large protein - little rotation

monochromatic, single orientation

c*>
. excitation
FluorOphore Con neCted Vla -C HZCHZ- polarizing filter f monochromatic, all orientations

linkage - reasonable rotation —W—
light
>/

all freqs
all orientations



Fluorescence Anisotropy

caveats and uses

Factors effecting anisotropy
* |local vs global motions

* FRET - scrambles polarization
e why?
* light scattering
e misalignment of polarizers
e problem for absolute measurements
e temperature dependence
* wavelength dependence
e T-format better, but more $$
* better sensitivity (2X)

* time dependent measurements

-1,
CL+2I,

I I

1

A _A_
\/ parallel oeroendculg\y

<0<« []>0-;

A monochromatic, single orientation

excitation

polarizing filter . . .
$ monochromatic, all orientations

light
all fregs s

all orientations /



Fluorescence Anisotropy

caveats and uses
Insights gained I 1
P 11

» Measure binding!

e sometimes IP + Q’IJ_

« Measure conformational change

I I

1

: A
* sometimes — —V—
7

A
- A spherical proteins —r/r =1+ 1/6 = 1 + 6D7, where Z_pa(r;"i_ Def:nécli\
D is the diffusion coefficient N

A monochromatic, single orientation

- Rotational correlation time 8 = nV/RT polarizing filte—
$ monochromatic, all orientations
« For a single exponential intensity decay Ma
light
o r=r /(1+ 1/0 allfreas __y
0 ( ) all orientations /

« Can calculate anisotropy of labeled proteins in
solution

* with caveats
* 0 = nV/RT = 6 = [nM/RT](v+h)



Single Molecule Fluorescence




Single Molecule Fluorescence




Single Molecule Fluorescence




Single Molecule Fluorescence

d——



Single Molecule Fluorescence




Single Molecule Fluorescence

*

-~ —»>

vt




Single Molecule Fluorescence

*

-~ —»>

vt




Single Molecule Fluorescence

*

-~ —»>

vt

single photon avalanche detector



Single Molecule Fluorescence

Why a microscope!

narrow Xx-y area
TIRF allows thin layer (z)

small observation volume < fL (10-1> L)



Single Molecule Fluorescence
Wide field microscope - Dual color

Image a cell



Single Molecule Fluorescence
Wide field microscope - Dual color

Measure millions of
“dots” simultaneously

Massively parallel data collection
AOTF = acousto-optical tunable filter (lifetimes, anisotropy, FRETm etc)



Single Molecule Fluorescence
Confocal Microscope - decreases background signal

avalanche photo-detectors

From a single molecule,
can observe 100,000-200,000
photons per second

Desirable: quantum
yields of 0.8-0.9



Single Molecule Fluorescence
Challenges in solution

Diffusion:

TranSIt tlme z50 ”S ..................................................................

100,000-200,000 photons per second
5-10 photons / transit !

Transit time =5 ms

<

200-300 nm



Towards Single Molecule Fluorescence

water

Why a microscope!? T e
narrow X-y area
TIRF allows thin layer (z)
small observation volume < fL (10-1> L)

How can we limit *
fluorescence only from things
very close to the surface!



Refraction of Light

Media with different refractive indices

>60 miles!

What common technology these days uses this?

faster glass w different
medium / refractive index

slower

medium Quartz



Refraction of Light

Media with different refractive indices

faster
; water
medium /
slower index of : :
Quartz speed of light in a vacuum

medium refraction

phase velocity of light
in the medium

’\/\/\/\/\/\ J\/\f\/\/\/ '\/\/\/\/\’ \/\/\/\/\/\ For a detailed explanation of phase

velocity and refractive index, see
Wikipedia


https://en.wikipedia.org/wiki/Refractive_index#Microscopic_explanation

Total Internal Reflectance
Media with different refractive indices

faster

medium / water
slower f //' e et glass
medium . (quartz)
critical TIR
angle
water

/ \ glass
(quartz)



Total Internal Reflectance

Molecular Cell 24, 317-329, November 3,2006
Single-Molecule Biology: Jordanka Zlatanoval, and

What Is It and How Does It Work? Kensal van Holde

_ £ oscillating field
E B
" g water

<4

In TIR, the excitation light is directed toward an interface between two media of different refractive indices (i.e., from an optically
denser medium, such as a glass slide, into a less-dense medium, such as water) (Axelrod, 2001).The incident angle of the beam is set
larger than a certain critical angle, defined by the properties of the two media; all the light is reflected off the glass and does not
penetrate into the solution (Figure |A). How-ever, an electromagnetic field that oscillates with the same frequency as the incident
light does form in the less-dense medium (the water on the other side). Because this electromagnetic field (also called evanescent
field or wave) decays exponentially from the glass surface, it is capable of exciting fluorophores only in a very small volume close to
the surface, thus effectively preventing out-of-focus fluorescence background.The excitation light itself is cleanly removed from the
observation chamber, reducing the background even further.



Single Molecule Fluorescence

Molecular Cell 24, 317-329, November 3, 2006

GFP

biotinylated
L4 subunit

Glass cover slip ECE



Single Molecule Fluorescence

Molecular Cell 24, 317-329, November 3, 2006



Single Molecule Fluorescence

Molecular Cell 24, 317-329, November 3, 2006

Jeff Gelles, et al.



Single Molecule Fluorescence



Refraction of Light

Media with different refractive indices

faster
. //////,/)' water
medium

I
slower / Bead
medium



Refraction of Light

Media with different refractive indices

water
faster
) ’///////)' water
medium

I
slower Bead
medium
Bead



Refraction of Light

Media with different refractive indices

water
faster
) ’///////)' water
medium

I
slower / Bead
medium

Light has momentum —V\Q
p

L4
L4
L4

conservation of momentum



Laser (Bead) Trap

Media with different refractive indices

Adapted from https://blocklab.stanford.edu/optical_tweezers.html



Laser (Bead) Trap

Media with different refractive indices

Adapted from https://blocklab.stanford.edu/optical_tweezers.html



Laser (Bead) Trap

Media with different refractive indices
force pushes bead to center of trap

/ .
< "4
ﬂ

Adapted from https://blocklab.stanford.edu/optical_tweezers.html



Laser (Bead) Trap

Media with different refractive indices
force pushes bead to center of trap

/ .
< "4
P

&

’« no net lateral force at center
4 but there is a net axial force

Adapted from https://blocklab.stanford.edu/optical_tweezers.html



Laser (Bead) Trap

Traps both laterally and axially

laser light in laser light in

Adapted from Roland Koebler, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=15083883 https://en.wikipedia.org/wiki/Optical _tweezers



Single Molecule Fluorescence

Molecular Cell 24, 317-329, November 3, 2006

The location (focus) of the
trap can be moved by
adjusting the focusing of
the lenses

Ashkin, A., Dziedzic, J., Bjorkholm, |. &
Chuy, S. (1986) Observation of a single-
beam gradient force optical trap for
dielectric particles. Opt. Lett. | |, 288-290

Nobel Prize in Physics 1997

Steven Chu
Prof of Physics and of Mol & Cell Bio
Stanford

U.S. Secretary of Energy
2009 - 2013



Single Molecule Fluorescence

Molecular Cell 24, 317-329, November 3, 2006

The location (focus) of the
trap can be moved by
adjusting the focusing of
the lenses

The strength of
the trap can also
be adjusted.



Single Molecule Fluorescence

Molecular Cell 24, 317-329, November 3, 2006



Single Molecule Fluorescence

Molecular Cell 24, 317-329, November 3, 2006

The force of the trap is varied,
automatically under computer control,
to maintain the bead in the trap.



Single Molecule Fluorescence

Molecular Cell 24, 317-329, November 3, 2006

(D) Stretching of a chromatin fiber assembled on naked 1-DNA molecule by the
addition of X. laevis egg extract directly into the flow cell of the instrument. The
extract contains core histones and protein factors needed for assembly (assembly is
manifested by shortening of the distance between the two beads with time). Note the
sharp discontinuities in the force-extension curve reflecting the unraveling of the DNA
from around the histone octamer that forms the core of the nucleosomal particles.
Nucleosomes can unwrap either individually or in groups of two, three, or four. At high
extension, when all histones have been forced off, the curve approaches that of naked
DNA. Note that the two force-extension curves for DNA (C) and chromatin (D) are
aligned with respect to the length of the structure during stretching, so that a direct
comparison of the behavior of DNA and of chromatin is possible.



Single Molecule Fluorescence

Molecular Cell 24, 317-329, November 3, 2006

Can flow things in and out...




Single Molecule Fluorescence

Molecular Cell 24, 317-329, November 3, 2006

Steve Block, et al.



Atomic Force Spectroscopy

Molecular Cell 24, 317-329, November 3, 2006



Atomic Force Spectroscopy

Molecular Cell 24, 317-329, November 3, 2006



Refraction of Light

Media with different refractive indices

Light slows in a medium other
than vacuum.

This is not scattering or
absorption.

The oscillating electric vector of
light causes electrons in atoms to
oscillate.

They, in turn, generate their own
electromagnetic wave (think of a
radio antenna) at the same
frequency, leading to constructive
interference.

The resulting "combined" wave
has wave packets that pass an
observer at a slower rate. The
light has effectively been slowed.

Vacuum

Electric field is oscillates at the
same frequency on each side

Propagation rate has changed

index of
refraction

speed of light in a vacuum

phase velocity of light in
the medium



Refraction of Light

Media with different refractive indices

Vacuum

slowed
less
faster L TS

. water
medium /
slower

) Quartz —
medium slowed

longer

By Ulflund - https://commons.wikimedia.org/w/index.php?curid=73784342

The amount of bending depends on:
- Change in speed (nv/n)
- Angle of the incident ray index of

refraction

speed of light in a vacuum

phase velocity of light in
the medium

Uniform
behavior




Scattering

Rayleigh scattering: the oscillating electric field of a light wave acts on the charges (electrons)
within a particle (atom/molecule), causing the charges to move at the same frequency (the
particle is polarizable). The particle, therefore, becomes a small radiating dipole whose
radiation we see as scattered light.




Scattering

In Raleigh scattering, the particles are much
smaller than the wavelength of the light.

EM of the incident light induces an oscillation in the electron cloud, with the same frequency as the incident light

The oscillating electron cloud (dipole) then generates EM (of the same frequency)
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EM of the incident light induces an oscillation in the electron cloud, with the same frequency as the incident light

The oscillating electron cloud (dipole) then generates EM (of the same frequency)
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molar mass (molecular weight) of solute (g/mol)

refractive index of the solvent in the absence of solute

change in refractive index of the solvent vs weight concentration of solute

= 0.185 mL/g for proteins (in water)

C = weight concentration of solute (g/mL) A\ = wavelength of laser light

Na = 6.022 - 102 mol™!
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change in refractive index of the solvent vs weight concentration of solute
= 0.185 mL/g for proteins (in water)

scattering “volume” seen by the detector at angle 0 and distance r

C = weight concentration of solute (g/mL) A\ = wavelength of laser light  Na = 6.022 - 102 mol™!
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C = weight concentration of solute (g/mL) A\ = wavelength of laser light  Na = 6.022 - 102 mol™!
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molar mass (molecular weight) of solute (g/mol)

correction factor that considers the SHAPE of the solute

refractive index of the solvent in the absence of solute

change in refractive index of the solvent vs weight concentration of solute
= 0.185 mL/g for proteins (in water)

C = weight concentration of solute (g/mL)

A\ = wavelength of laser light
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molar mass (molecular weight) of solute (g/mol)

correction factor that considers the SHAPE of the solute

A2 (second virial coefficient) is a measure of non-ideality - a measure of the
interaction forces between dissolved particles: If A; is positive, the

interparticle forces are repulsive. If it is negative the forces are attractive.
refractive index of the solvent in the absence of solute

change in refractive index of the solvent vs weight concentration of solute
= 0.185 mL/g for proteins (in water)

C = weight concentration of solute (g/mL) A\ = wavelength of laser light ~ Na = 6.022 - 102 mol!
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Confocal Fluorescence Microscopy Anisotropy
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simple fluorescence or direct FRET?
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e N imaging (FLIM) FRET
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Raleigh Scattering

Raleigh light scattering

A h

Fluorescence
A emission

400 nm


http://en.wikipedia.org/wiki/Raleigh_scattering

Fluorescence Spectroscopy

Raleigh light scattering

h

IIght W Fluorescence
>
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Scattering - TWO particle

10 nm
_’H‘_ Diffraction
Particle Pattern
Pair
o
o
A .,
Constructive
& Destructive
.. Interference
450 nm ’," 4 ....... O
you see a
Thomas Young - Royal Society, 1803 pattern of dark

and light spots


http://en.wikipedia.org/wiki/Diffraction_pattern
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Scattering - MANY particles

you see dark
and light spots,
but no pattern
Many pairwise groups of o €>
constructive & destructive .

, Scattering
interferences

but no
pattern

But no coherent additivity

"~ Constructive
& Destructive
.. Interference

you see a

Thomas Young - Royal Society, 1803 pattern of dark
and light spots



Dynamic Light Scattering

10 nm

—»ue—

©_ o Pair of molecules yields
o |% © scattering at a specific angle and magnitude
o

~ Constructive
o & Destructive
.. Interference

T Thomas Young - Royal Society, 1803
450 nm



Dynamic Light Scattering

10 nm

—»ue—

O o O
o) O Pair of molecules yields
%l o scattering at a specific angle and magnitude
O
O ©© Different sizes - a new angle & magnitude
" Constructive
o)

o & Destructive
.. Interference

T Thomas Young - Royal Society, 1803
450 nm



Dynamic Light Scattering

10 nm
_>u<_ Photon Correlation Spectroscopy
@ :
Volume empty - no scattering
° o
@

~ Constructive
o & Destructive
.. Interference

T Thomas Young - Royal Society, 1803
450 nm



Dynamic Light Scattering

10 nm
_,u<_ Photon Correlation Spectroscopy
@
Volume empty - no scattering
®
(o) o
" Constructive
o)

o & Destructive
.. Interference

T Thomas Young - Royal Society, 1803
450 nm



-~ Dynamic Light Scattering

_>u<_ Photon Correlation Spectroscopy

T‘ Smaller molecule scattering - angle 1

~ Constructive
o & Destructive
.. Interference
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Thomas Young - Royal Society, 1803



Dynamic Light Scattering

10 nm
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Dynamic Light Scattering

i?glm_ Photon Correlation Spectroscopy
Autocorrelation
- ° 0 function
o : (1(t) It + 7))
: g’ (q.t) = ;
/ \ (1(t))
Specific time
o wave vector
o
T (f(t)> = time average of f(t)

450 nm


http://en.wikipedia.org/wiki/Dynamic_light_scattering
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Dynamic Light Scattering

Photon Correlation Spectroscopy

, small time
Autocorrelation .
, interval
function
, @A(t)-1(t+ 7))
g’ (q.t) =
10 ™
non-zero only
when particles
Specific time “stick around” in
wave vector time T
Intensity of

scattered light

(f(t)> = time average of f(t)


http://en.wikipedia.org/wiki/Dynamic_light_scattering

Dynamic Light Scattering

10 nm
_>u<_ Photon Correlation Spectroscopy
o . @A(t)-1(t+7))
O
(1)
'®) non-zero only when
O particles “stick around”
in time T

Relates to probability distribution function

: P(r,t10,0) = (4pDt) 72 e

Assumes random (Brownian) motion

450 nm



-~ Dynamic Light Scattering

_>u<_ Photon Correlation Spectroscopy

C 5 gz(qt)=<m>

° Oy D
®) < > non-zero only when
O particles “stick around”
in time T

Diffusion relates to (hydrodynamic) size

kT
6TTNr

o ) =

Assumes spherical particles of radius R

T Calibrate with particles of known size
450 nm
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Dynamic Light Scattering

10 nm .
— | Assumptions and Caveats
ke T
D= 61T
r
O 4 Assumes "
° 5 » Brownian motion
o L° * non-interacting billiard balls
o .
» Spherical scatterers

* Proper calibration for viscosity, etc
* Properly dilute solution
 No interference from other scatterers

450 nm
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Dynamic Light Scattering

Assumptions and Caveats

ke T
6TINr

Assumes
* Brownian motion
* non-interacting billiard balls
» Spherical scatterers
* Proper calibration for viscosity, etc
* Properly dilute solution
 No interference from other scatterers
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Read data from a file

edat <- read.csv("DataGrp1.csv", header = TRUE)

To confirm a successful read:

edat

t dat
0 10.13859677
1 8.35533476
2 6.76788472
3 5.36280912

A WNPR X

plot(edat$t, edat$dat)

Go to Moodle
Find out what group you are in
Download your group data file
Launch R
Read the data in

Plot the data
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Read data from a file

edat <- read.csv("DataGrp1.csv", header = TRUE)

To confirm a successful read:

edat

dat
10.13859677
8.35533476
6.76788472
5.36280912

A WN PP X
WNEFRS

plot(edat$t, edat$dat)

edat1$dat
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. What does
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Exponential
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Fluorescence

Let’s make the plot prettier

plot(edat$t, edat$dat, xlab="Time (s)”, vlab="Fluorescence”)

10

Return to Breakout Group

Re-plot the data as above

Remember “up-arrow”

Watch out for “curly quotes”



Fluorescence

Log scale

plot(edat$t, edat$dat, xlab="Time (s)”, ylab="Fluorescence”, log="y")
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Fluorescence

10

Come up with a function

Experiment (observations)

y=B + Aetr

40

Fluorescence

5.0 10.0

0.5 1.0 2.0

0.1 0.2

Distortion of data

misrepresented
error
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Come up with and define a function

y — Ae-’[/T

Time (s)



eDecay(t, 10, 5)

Come up with and define a function

eDecay <- function(t, ampl, tau) (ampl*exp(-t/tau))

func name define parameters

plot(t, eDecay(edat$t,10,5))

func definition

y — Ae-’[/T



R - nonlinear regression (nls)

eDecay <- function(t, ampl, tau) (ampl*exp(-t/tau))

func name define parameters func definition

model1 <- nis(edat$dat ~ eDecay(edat$t,ampl,tau), start=list(ampl=10, tau=5), trace=TRUE)

T fluor data function call
Results
stored Compare experimental data to theory
here Return to Breakout Group

summary(model1) y — Ae-t/T



R - nonlinear regression (nls)

modell <- nis(edat$dat ~ eDecay(edat$t,ampl,tau), start=list(ampl=10, tau=5), trace=TRUE)

fluor data

Formula: edatl$dat ~ eDecay(edatl$t, ampl, tau)

Parameters:

Estimate Std. Error t value Pr(>|t])
ampl  9.5239 0.2294 41.52 <2e-16 *kx
tau 6.2702 0.2308 27.16 <2e-16 *xxx

Formula: edat2$dat ~ eDecay(edat2$t, ampl, tau)

Parameters:

Estimate Std. Error t value Pr(>|t])
amp L 9.3353 0.1727 54.05 <2e-16 sk*kx
tau 6.3280 0.1788 35.39 <2e-16 kxxk

Formula: edat3$dat ~ eDecay(edat3$t, ampl, tau)

Parameters:

Estimate Std. Error t value Pr(>]|t])
amp L 9.3329 0.1938 48.16 <2e-16 *kxkx*
tau 6.4709 0.2049 31.58 <2e-16 sk

Formula: edat4$dat ~ eDecay(edatd4$t, ampl, tau)

Parameters:
Estimate Std. Error t value Pr(>|t])
amp L 9.1827 0.1936 47.44 <2e-16 *xx

tau 6.5311 0.2098 31.12 <2e-16 skkx

function call

Rigor and
Reproducibility?

= Ae-lt
V=90

95+0.2 6.3+0.2s
6.3+02s
6.5+0.2s

6.5+0.2s



edat1$dat

R - Plot data and the fit

modell <- nis(edat$dat ~ eDecay(edat$t,ampl,tau), start=list(ampl=10, tau=5), trace=TRUE)

fluor data function call

plot(edat$t, edat$dat)

lines(edat$t,predict(model1))

R func

00%000 ©
5 o

edat1$t

Return to Breakout Group

= Ae-lt
V=00

9.5+0.2 6.3+0.2s
9.3+0.2 6.3+0.2s
9.3+0.2 6.5+0.2s

9.2+0.2 6.5+0.2s



y = Ae-t/t

edat1$dat

edat3$dat

10

10

R - nonlinear regression (nls)

edat1$t

edat3$t

40

edat2$dat

edat4$dat

—_

10

o

edat2$t

9.2+0.2

6.5+0.2s

edat4$t




edat1$dat

R - Plot data and the fit

modell <- nis(edat$dat ~ eDecay(edat$t,ampl,tau), start=list(ampl=10, tau=5), trace=TRUE)

fluor data function call

Residual

Observed - BestFit

edat1$t
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Read data from a file

edat <- read.csv("DataGrp1.csv", header = TRUE)

To confirm a successful read:

edat

t dat
0 10.13859677
1 8.35533476
2 6.76788472
3 5.36280912

A WNPR X

plot(edat$t, edat$dat)

Go to Moodle
Find out what group you are in
Download your group data file
Launch R
Read the data in

Plot the data
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Fluorescence

Let’s make the plot prettier

plot(edat$t, edat$dat, xlab="Time (s)”, vlab="Fluorescence”)

10

Return to Breakout Group

Re-plot the data as above

Remember “up-arrow”

Watch out for “curly quotes”



Fluorescence

Log scale

plot(edat$t, edat$dat, xlab="Time (s)”, ylab="Fluorescence”, log="y")
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Come up with and define a function

y — Ae-’[/T

Time (s)



eDecay(t, 10, 5)

Come up with and define a function

eDecay <- function(t, ampl, tau) (ampl*exp(-t/tau))

func name define parameters

plot(t, eDecay(edat$t,10,5))

func definition

y — Ae-’[/T



R - nonlinear regression (nls)

eDecay <- function(t, ampl, tau) (ampl*exp(-t/tau))

func name define parameters func definition

model1 <- nis(edat$dat ~ eDecay(edat$t,ampl,tau), start=list(ampl=10, tau=5), trace=TRUE)

T fluor data function call
Results
stored Compare experimental data to theory
here Return to Breakout Group

summary(model1) y — Ae-t/T



R - nonlinear regression (nls)

modell <- nis(edat$dat ~ eDecay(edat$t,ampl,tau), start=list(ampl=10, tau=5), trace=TRUE)

fluor data

Formula: edatl$dat ~ eDecay(edatl$t, ampl, tau)

Parameters:

Estimate Std. Error t value Pr(>|t])
ampl  9.5239 0.2294 41.52 <2e-16 *kx
tau 6.2702 0.2308 27.16 <2e-16 *xxx

Formula: edat2$dat ~ eDecay(edat2$t, ampl, tau)

Parameters:

Estimate Std. Error t value Pr(>|t])
amp L 9.3353 0.1727 54.05 <2e-16 sk*kx
tau 6.3280 0.1788 35.39 <2e-16 kxxk

Formula: edat3$dat ~ eDecay(edat3$t, ampl, tau)

Parameters:

Estimate Std. Error t value Pr(>]|t])
amp L 9.3329 0.1938 48.16 <2e-16 *kxkx*
tau 6.4709 0.2049 31.58 <2e-16 sk

Formula: edat4$dat ~ eDecay(edatd4$t, ampl, tau)

Parameters:
Estimate Std. Error t value Pr(>|t])
amp L 9.1827 0.1936 47.44 <2e-16 *xx

tau 6.5311 0.2098 31.12 <2e-16 skkx

function call

Rigor and
Reproducibility?

= Ae-lt
V=90

95+0.2 6.3+0.2s
6.3+02s
6.5+0.2s
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edat1$dat

R - Plot data and the fit

modell <- nis(edat$dat ~ eDecay(edat$t,ampl,tau), start=list(ampl=10, tau=5), trace=TRUE)

fluor data function call

plot(edat$t, edat$dat)

lines(edat$t,predict(model1))

R func
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Return to Breakout Group
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y = Ae-t/t
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R - nonlinear regression (nls)
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edat1$dat

R - Plot data and the fit

modell <- nis(edat$dat ~ eDecay(edat$t,ampl,tau), start=list(ampl=10, tau=5), trace=TRUE)

fluor data function call

Residual

Observed - BestFit

edat1$t



y = Ae-t/t
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R - nonlinear regression (nls)
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y = Ae-t/t . .
R - nonlinear regression (nls)

Groups 1-4
| Reproducible! Observations!?
—_ -t/T
o y = '/?‘e \ Rigorous!?

95+0.2 6.3+0.2s
9.3+0.2 6.3+0.2s
9.3+0.2 6.5+02s

Fluorescence




edat1$dat

R - Plot data and the fit

modell <- nis(edat$dat ~ eDecay(edat$t,ampl,tau), start=list(ampl=10, tau=5), trace=TRUE)

fluor data function call

edat1$t

Residual
Observed - BestFit

Mathematical goal of curve fitting

RSS = 3 (s — £(z)’



= Ae-t/t .
d R - Residuals

plot(edat$t,residuals(model))
abline(h=c(0.0), Ity=2)

Return to Breakout Group
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R - Residuals

y = Ae-t/t
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y = Ae-t/t
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R - Residuals

Residuals = “Noise”

(or at least we supposed)

Time (s)

Groups 1-4
o
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] © g 0 ° Observations!?
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o °© o © o ° X 068,°
. o © T Noise should be
----------------------- O—---O----Q----O-e---------;----"-----------Q--- . .
S ° ° O randomly distributed
o) oo
o
In fact, the fitting assumes
a normal distribution in
| | | the noise
20 30 40



o
o S Jo
o - o
© o)
o o
o | o
o o w0 c)O
< o
c OO o o o 4 >
o o o ©o -
= o o o | (@)
S o © o © al 0%o
T O °© Q o
8 o OC> °5 3 ©
£ © ® o | o
@ o
§ [ o X g - © o © ©
s © o > °s
7} o o 1
o o o0 ° v | o [0) Oo
o o o o [¢]
cls - o ° o o
o) o
o
< o o
OI'* o o oo o
o
o
© °o s °
S
7 I I I I I T T T T T
0 10 20 30 40
0 10 20 30 40
edat1$t
Time (s)

model2 <- nls(edat$dat ~ eDecay2(edat$t,ampl,f,taul tau2), start=list(ampl=10, =0.5, tau1=3, tau2=8), trace=TRUE)



Wrong Model?
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model2 <- nls(edat$dat ~ eDecay2(edat$t,ampl,f,taul tau2), start=list(ampl=10,

=0.5, tau1=8, tau2=8), trace=TRUE)



y = Ae-t/t eturn to Breakout Grou
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bi tial d

eDecay?2 <- function(t, ampl, f, taul, tau2) (ampl*((*exp(-t/tau1))+((1-)*exp(-t/tau2))))

func name define parameters func definition

model2 <- nls(edat$dat ~ eDecay2(edat$t,ampl,f,taul tau2), start=list(ampl=10, =0.5, tau1=3, tau2=8), trace=TRUE)



y = Ae-t/t y = A[ et 4 (1 - )e-t/TZ]
R - nonlinear regression (nls)

eDecay?2 <- function(t, ampl, 1, taul, tau2) (ampl*((*exp(-t/tau))+((1-)*exp(-t/tau2))))
model2 <- nis(edat$dat ~ eDecay2(edat$t, ampl, f, taul, tau2), start=list(ampl=10, f=0.5, taui1=2.5, tau1=10), trace=TRUE)
summary(model2) Return to Breakout Group

Formula: edatl$dat ~ eDecay2(edatls$t, ampl, f1, taul, tau2)

Parameters:

Formula: edatl$dat ~ eDecay(edatl$t, ampl, tau) Estimate Std. Error t value Pr(>|t|)

Estimate Std. Error t value Pr(>|t]) f 0.6374 0.1074 5.933 7.75e-07 kkxk

taul 3.4062 0.5409 6.297 2.49e-07 *xxkx

ampl  9.5239 0.2294  41.52  <2e-16 *xx tau2 11.8507 2.0367 5.818 1.11e-06 *xx
tau 6.2702 0.2308 27.16 <2e-16 skxxk

Formula: edat2$dat ~ eDecay2(edat2$t, ampl, f1l, taul, tau2)

Formula: edat2$dat ~ eDecay(edat2$t, ampl, tau) ampl 9.9212 0.1512 65.614 < 2e-16 *k*x

U o.3353 0.1727  54.05 o1t f 0.4342 0.1035 4.195 0.000163 skx
amp . . . <Z€-106 okok taul 2.7866 0.5781 4.820 2.46e-05 xxx
tau  6.3280 0.1788  35.33  <2e-16 kx tau2  8.9873 0.8865 10.138 3.16e—12 sokx

Formula: edat3$dat ~ eDecay2(edat3$t, ampl, f1, taul, tau2)
Formula: edat3$dat ~ eDecay(edat3$t, ampl, tau)

ampl  9.3329 0.1938 48.16 <2e-16 sk ampl 9.8412 0.1867 52.709 < 2e-16 sk
) ) ' - f 0.5901 0.1615 3.654 0.000795 sxxkx
tau - 6.4709 0.2049  31.58  <2e-16 Ax taul  3.6538 0.7715 4.736 3.18e-05 %*x
tau2 10.8119 2.1369 5.060 1.17e-05 sx

Formula: edat4s$dat ~ eDecay(edat4$t, ampl, tau) Formula: edat4$dat ~ eDecay2(edatd4$t, ampl, f1, taul, tau2)
anpl  2.%827  D.19%0 3% elowe ampl 9.86679  0.15321 64.401 < 2e-16 sokx
f 0.49242 0.08878 5.547 2.58e-06 xxkxxk

taul 2.90183 0.49557 5.856 9.85e-07 xxkx
tau2 10.03356 1.00571  9.977 4.89e-12 xxxk



y = A[fe-t/ﬂ + (1 _f)e-t/T2]
R - nonlinear regression (nls)

eDecay?2 <- function(t, ampl, 1, taul, tau2) (ampl*((*exp(-t/tau))+((1-)*exp(-t/tau2))))

model2 <- nis(edat$dat ~ eDecay2(edat$t, ampl, f, taul, tau2), start=list(ampl=10, f=0.5, taui1=2.5, tau1=10), trace=TRUE)

0.64 +0.11 Formula: edatl$dat ~ eDecay2(edatl$t, ampl, f1l, taul, tau2)
Parameters:
0.43 +0.10 Estimate Std. Error t value Pr(>|t])
ampl 10.1816 0.1912 53.241 < 2e-16 *kx%k
0.59 +£0.16 s T 0.6374 0.1074  5.933 7.75e-07 %%k
taul 3.4062 0.5409 6.297 2.49e-07 xxkx
l Formula: edat2$dat ~ eDecay2(edat2$t, ampl, f1l, taul, tau2)
ampl  9.9212 0.1512 65.614 < 2e-16 *kx
f 0.4342 0.1035 4,195 0.000163 *xxx
— - - taul  2.7866 0.5781  4.820 2.46e-05 *xkx
y — A[fe t/T1 + (1 -f)e t/TZ] tau?2 8.9873 0.8865 10.138 3.16e-12 sxxkxk
f \ f Formula: edat3$dat ~ eDecay2(edat3$t, ampl, f1l, taul, tau2)
ampl 9.8412 0.1867 52.709 < 2e-16 skxkxk
10.2+0.2 3.4+05s 12+£2s f 0.5901 0.1615 3.654 0.000795 sokk
taul 3.6538 0.7715 4.736 3.18e-05 xxxk
99+0.2 28+06S 9+1s tau2 10.8119 2.1369 5.060 1.17e-05 xxkx

Formula: edat4$dat ~ eDecay2(edatd4$t, ampl, f1, taul, tau2)
9.8+0.2 3.7+0.8s 11+2s
ampl 9.86679 0.15321 64.401 < 2e-16 xkxk
f 0.49242 0.08878 5.547 2.58e-06 xxx
9.9+0.2 29+0.5s 10+1s taul 2.90183 0.49557 5.856 9.85e-07 skx
tau2 10.03356 1.00571 9.977 4.89e-12 xxkxk



y = A[fe-t/ﬂ + (1 _f)e-t/TZ]
R - nonlinear regression (nls)

eDecay?2 <- function(t, ampl, 1, taul, tau2) (ampl*((*exp(-t/tau))+((1-)*exp(-t/tau2))))

model2 <- nis(edat$dat ~ eDecay2(edat$t, ampl, f, taul, tau2), start=list(ampl=10, f=0.5, taui1=2.5, tau1=10), trace=TRUE)

0.64 +=0.11
0.43 +0.10 Less
g-iz + g-;g S reproducible
49 +0.09 s
y = Alle ! + (1-)e] y =Aett

" / R

10.2+0.2 34x05s 12:2s 95+02  63+02s
99+02 28+06s 9x1s 93+x0.2  63x02s
9802 37x08s 11x2s 93+0.2 65%02s
9902 29+05s 10x1s 92+02 65025




edat1$dat

10

R - nonlinear regression (nls)

................. y = A[ e-ttl 4 (1 - )e-t/TZ]

10.2+0.2 T1= 34+£05s
T2=12%2s

— Yy = Ae-t/t

05s00 T=63%02s

Better!

edat1$t



R - residuals
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Residuals (Expt — Theory)

0.4

0.2

0.0

-0.2

-0.4

R - residuals

Groups 1-4 Biphasic
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Estimate Std. Error t value Pr(>|t]|) Estimate Std. Error t value Pr(>|t])

ampl 10.1816 0.1912 53.241 < 2e-16 *kk%k ampl  9.5239 0.2294  41.52 <2e-16 skx
f 0.6374 0.1074  5.933 7.75€-07 *kx o tau  6.2702 0.2308 27.16 <2e-16 ok
taul 3.4062 0.5409 6.297 2.49e-07 *xxx - reSI ua S
tau2 11.8507 2.0367 5.818 1.11e-06 **xx*x
10.2 £0.2 1= 34+05s
95+02 T1=6.3x£02s
2=12+2s
y = Alfe VT + (1-f)eVt?] y = Aelt
Groups 1-4 Biphasic Groups 1-4
< | Parameters more uncertain: why? o .
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Estimate Std. Error t value Pr(>|t])

ampl 9.5239 0.2294 41.52 <2e-16 xkx
tau 6.2702 0.2308 27.16 <2e-16 xkx

Noise should be R - residuals

randomly distributed

95+0.2 T=6.3+0.2s

In fact, the fitting assumes
S = Aelt
a normal distribution in y —

Histogram of rAll1

the noise Groups 1-4
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Residuals (Expt — Theory)

0.4

0.2

0.0

-0.2

-0.4

R - residuals

10.2+0.2 T1= 34+05s
2=12+25S

y = A[ e-t/tl 4 (1 - )e-t/TZ]

Groups 1-4 Biphasic

Time (s)

Noise should be
randomly distributed

In fact, the fitting assumes
a hormal distribution in
the noise




R - residuals

y =Ae'tr y = Alfett + (1-f)e]

rAll1

Histogram of rAll1

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

0c Sl ol S 0

Aouanbaiy

We will rarely have this much data!



Residuals (Expt — Theory)

0.4

0.2

0.0

-0.2

-0.4

R - residuals

y = A[fe-t/ﬂ + (1 _f)e-t/TZ]

y = Ae-t/t
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Residuals (Expt — Theory)

0.4

0.2

0.0

-0.4

R - residuals

y = A[ e/t 4 (1 - )e-t/TZ]

Groups 1-4 Biphasic

s og : Perhaps we should fit
T with a Tri-Exponential?




Fluorescence

10

y = A[fe-t/ﬂ + (1 _f)e-t/TZ]

A=9.96 +0.09

9.79...10.13
+1.7%

9.78...10.13
-1.7% +1.7%

f=053+0.06 T11=316+0.30s 12=10.2+0.7s
0.42...0.64 2.57...3.76 8.85...11.58
+21.7% +18.8% +13.4%
0.42...0.66 2.55...3.80 9.03...12.05
-21.5% +23.6% -19.4% +20.2% -11.6% +18.0%

summary(model)

param = std error
( param + 2(st err) )
percent

97.5% confidence interval
percent

confint(model)



Fluorescence

10

y = A[fe-t/ﬂ + (1 _f)e-t/TZ]

A§996}%0.09 f 0.06 T 0.30s 12=10.2+0.7 s

9.79...10.13 0.42...0.64 2.57...3.76 18.85.]|11.58]
+1.7% +21.7% +18.8% +13.4%

9.78...10.13 0.42...0.66 2.55...3.80 9.03...12.05

1.7% +1.7% -21.5% +23.6% 19.4% +20.2% -11.6% +18.0%

summary(model)

param = std error
( param + 2(st err) )
percent

97.5% confidence interval
percent

confint(model)



Fluorescence

10

y = A[fe-t/ﬂ + (1 _f)e-t/TZ]

A§996}%0.09 f 0.06 T 0.30s 12=10.2+0.7s

9.79...10.13 0.42...0.64 2.57...3.76 8.85...11.58
+1.7% +21.7% +18.8% +13.4%

9.78...10.13 0.42...0.66 2.55...3.80 19.03.]]12.05]

1.7% +1.7% -21.5% +23.6% -19.4% +20.2% -11.6% +18.0%

10 20 30 40

summary(model)

param = std error
( param + 2(st err) )
percent

97.5% confidence interval
percent

confint(model)



Fluorescence

10

y = A[fe-t/ﬂ + (1 _f)e-t/TZ]

A§996}%0.09 f 0.06 T11=3.16+0.30s T2 0.7s

9.79...10.13 0.42...0.64 2.57...3.76 8.85...11.58
+1.7% +21.7% +18.8% +13.4%

9.78...10.13 0.42...0.66 [ 2.55 J{3.80 | 9.03...12.05

1.7% +1.7% -21.5% +23.6% -19.4% +20.2% -11.6% +18.0%

summary(model)

param = std error
( param + 2(st err) )
percent

97.5% confidence interval
percent

confint(model)



Fluorescence

y = A[fe-t/ﬂ + (1 -f)e-t/TZ]

Af096 4000 f053Jooe t1=816:030s 12{10240.7s Af99640.00 0534006 11 {3164030s T2=102:07s
9.79...10.13 0.42...0.64 2.57...3.76 8.85...11.58 9.79...10.13 0.427..0.64 2.57...3.76 8.85...11.58
9.78...10.13 0.42...0.66 9.03...12.05 9.78...10.13 0.42...0.66 2.55...3.80 12.05

Biphasic Confidence Intervals Biphasic Confidence Intervals
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g
(0]
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Fluorescence

A {9963 0.0

y = A[fe-t/ﬂ + (1 -f)e-t/TZ]

f=053+0.06 T143.1640.30s T12410.240.7s

9.79...10.13 0.42...0.64 257...3.76 8.85...11.58
9.78...10.13 2.55...3.80 9.03...12.05
Biphasic Confidence Intervals

9 —

©

©

<

~

o

Fluorescence

A §9:9630.00

9.79...10.13

9.78...10.13

f40.5340.06 1143.1640.30s
0.42...0.64 257...3.76

0.42...0.66 2.55...3.80

Biphasic Confidence Intervals

12=102+0.7s
8.85...11.58

10




Fluorescence

10

y=A
summary(model2, correlation = TRUE)
Correlation of Parameter Estimates:
ampl f taul
f -0.23

taul -0.46 0.93
tau2 -0.23 0.97 0.86

: e/t 4 (1 - )e-t/TZ]

R command

R output



Fluorescence

10

summary(model2, correlation = TRUE)

Correlation of Parameter Estimates:
amp L f taul tau?2

ampl -0.23 -0.46 -0.23

f -0.23 0.93 0.97

taul -0.46 0.93 0.86

tau2 -0.23 0.97 0.86

: e/t 4 (1 - )e-t/TZ]

R command

R output

-1 = full anti-correlation

0 = no correlation

1 = full correlation



Fluorescence

10

summary(model2, correlation = TRUE)

Correlation of Parameter Estimates:
amp L f taul tau2

ampl -0.23 -0.46 -0.23

f -0.23 0.93 0.97

taul -0.46 0.93 0.86

tau2 -0.23 0.97 0.86

: e/t 4 (1 - )e-t/TZ]

R command

R output

-1 = full anti-correlation

0 = no correlation

1 = full correlation



Fluorescence

10

Correlation of Parameter Estimates:

amp L f taul tau?2
-0.23 -0.46 -0.23

0.93 0.97
0.86

ampl
f -0.23
taul -0.46 0.93
tau2 -0.23 0.97 0.86

: e/t 4 (1 - )e-t/TZ]

R command

R output

-1 = full anti-correlation

0 = no correlation

1 = full correlation



Fluorescence

10

Perhaps we should fit

with a Tri-Exponential? Y=~

Not enough independent information
Indeed, nls crashes when you try (singularity)

Correlation of Parameter Estimates:
amp L f taul tau?2

ampl -0.23 -0.46 -0.23

f -0.23 0.93 0.97

taul -0.46 0.93 0.86

tau2 -0.23 0.97 0.86

: e/t 4 (1 - )e-t/TZ]

R command

R output

-1 = full anti-correlation

0 = no correlation

1 = full correlation



y = A[fe-t/ﬂ + (1 -f)e-t/TZ]

pf=profile(model2)
plot(pf, conf = ¢( 99, 95, 90, 80, 50)/100, absVal = TRUE, ylab = NULL, Ity = 2)

Tl

2.5

2.0

1.5

1.0

0.5

0.0

Af996 4009 006 1 030s T2=102%07s
9.79...10.13  0.42..0.64 257...3.76 8.85...11.58

9.78...10.13 0.42...0.66 2.55...3.80 9.03...12.05

° ] ¢ T2=10.2s

(0] ©
o
C
(0]
@
o
o
>
T <
N —
o p—
T T T I T T T T T
10 11 12 13 0 10 20 30 40

tau2
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10

y = A[ et 4+ (1 - )e-t/TZ]

summary(model2, correlation = TRUE)

Correlation of Parameter Estimates:
amp L f taul tau?2

ampl -0.23 -0.46 -0.23

f -0.23 0.93 0.97

taul -0.46 0.93 0.86

tau2 -0.23 0.97 0.86

R command

R output



y = A[ et 4+ (1 - )e-t/TZ]

plot(ellipse(model2,level=c(0.95),which=c('myTaul’,'myTau2")), type = 'I')

Correlation of Parameter Estimates:
amp 1 f taul tau?2

amp 1 -0.23 -0.46 -0.23
f -0.23 0.93 0.97
taul -0.46 0.93 0.86

tau2 -0.23 0.97 0.86

12.0
|

Parameters:

Estimate Std. Error t value Pr(>|t])
ampl 9.95572 0.08520 116.856 <2e-16 k%
1 0.53314 0.05767 9.244 <2e-16 *x*k%k
taul 3.16427 0.29720 10.647 <2e-16 *x*k*k
tau2 10.21256 0.68244 14.965 <2e-16 *xxkxk

_ 95%

110 115

10.5
|

tau2

taul 2.57 .. 3.75
tau2 8.85 .. 11.58

10.0
|

9.5

ampl 9.78 .. 10.139
fl 0.42 .. 0.66
taul 2.55 .. 3.80
tau2 9.03 .. 12.05

9.0

8.5

2.5 3.0 3.5

tau1



2.5

2.0

1.5

1.0

0.5

0.0

y = A[fe-t/ﬂ + (1 -f)e-t/TZ]

tau2

25

2.0

1.5

1.0

0.5

0.0

12.0

tau2
9.5 10.0 105 110 115

9.0

8.5

2.5

3.0 3.5 4.0

tau1

95%

2.5

3.0

tau1

3.5




y = Ae-t/t
y = A[ e/t 4 (1 - )e-t/TZ]

anova(modell, model2)

A good model not only needs to fit data well,
it also needs to be parsimonious. That is, a good
model should be only be as complex as
necessary to describe a dataset.

If you are choosing between a simple model
with 2 parameters, and a more complex
model with, say, 4 parameters, the complex
model needs to provide a much better fit to
the data in order to justify its increased
complexity. If it can’t, then the simpler model
should be preferred.

To compare the fits of two models, you can
use the anova() function with the regression
objects as two separate arguments.The
anova() function will take the model objects as
arguments, and return an ANOVA testing
whether the more complex model is
significantly better at capturing the data than
the simpler model. If the resulting p-value is
sufficiently low (usually less than 0.05), we
conclude that the more complex model is
significantly better than the simpler model, and
thus favor the more complex model. If the p-
value is not sufficiently low (usually greater
than 0.05), we should favor the simpler model.

Adapted from:

Fluorescence

Analysis of Variance Table

Model 1: edt$dat ~ eDecay(edt$t, ampl, tau)

—» Model 2: edt$dat ~ eDecay2(edts$t, ampl, f1, taul, tau2)

10

Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)
1 162 13.3479
2 160 —» 5.7151 2 7.6328 106.84 <k 2.2e-16 *xxk

Signif. codes: 0 ‘xxkx’ 0.001 ‘xx’' 0.01 ‘x' 0.05 ‘.’ 0.1 ‘ ' 1

---- Mono Exponential
-------- Bi Exponential

. y = A[ e/t 4 (1 - )e-t/TZ]

https://bookdown.org/ndphillips/YaRrr/comparing-regression-models-with-anova.html Time (s)



Question: | drove to New Haven recently.
It took me | hr 25 min, driving at 70 mi/hr.
How far is it from Amherst to New Haven!

(70mi)(85min)( hr )=

hr 60 min

Write your answer on a

piece of paper
99.167 miles

\

0.001 miles =5 ft



Question: | drove to New Haven recently.
Google Maps says that it’s 91 miles.
It took me | hr 25 min
How fast was | driving, on average!

Olmi ( 60 min)

85 min hr

64.2353 miles/hour



Alexa: will it rain tomorrow!

“You can expect |.34 inches of rain tomorrow”

Parameters:

Estimate Std. Error t value Pr(>]|t])
ampl 9.95572 0.08520 116.856 <2e-16 xxkx
fl 0.53314 0.05767 9.244 <2e-16 *xxkxk
taul 3.16427 0.29720 10.647 <2e-16 *xkx
tau2 10.21256 0.68244 14.965 <2e-16 xxkxk



Significant Figures - Rules

#2 ) Addition / Subtraction

123.45 If you don’t
: know this digit
85.3

1.959
210.709

: Then you don’t
210.7: know this digit

Don’t report it!



Significant Figures - Rules

#2 ) Addition / Subtraction

123.45 If you don’t

I~ know this digit #3 ) Multiplication / Division
85. 35
1.959 123.45 x 1.95 = 240.7275
210. 7509 5sig figs 3 sig figs

! , 241
: Then you don'’t .
210.7: know this digit 3 SIg fIgS

Don’t report it!



Significant Figures - Rules

#| ) Think - be reasonable! Always!
How much do you believe that last digit?

#2 ) Addition / Subtraction

123.45 If you don’t

I~ know this digit #3 ) Multiplication / Division
85. 35
1.959 123.45 x 1.95 = 240.7275
210. 7509 5sig figs 3 sig figs

! , 241
. Then you don'’t .
210.7: know this digit 3 SIg fIgS

Don’t report it!



Sources of Error

e Sample concentration
- Augo, Bradford, etc —

e Sample purity

- Other proteins, absorbers

e Sample activity



Sources of Error

e Sample activity

’
80% Active

2 0.8 e
>
m 0.6L
-
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©
L 0.2
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0 10 20 30 40 50

L] uM



Sources of Error

e Sample activity

7% Active
3500 —

3000
2500 /
2000 L.

1500 L
1000
500
0

Signal

0 10 20 30 40 50

L] uM



Sources of Error

* Sample activity Equivalence Point
3500 l
3000 /
[ 2500
5? 2000

1500

500

1 1.5 2

[L] uM



Sample Activity

Fitting all data is better than the

approach shown at right

These approaches only work for

tight-binding interactions

Signal

Signal

3500
3000
2500
2000
1500
1000
500
0

3500
3000
2500
2000
1500
1000

500

”i;;;;;;: """""""""""""
0 10 jo[ ’ IJMso 40 50
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Methods to Measure Binding
Filter Binding

W p
o %o
32p
—>o np
2P
2
f—

Equilibrate

This shouldn’t &
work: why? ﬁ FQ [_C_j:ﬁ)

— > 32P

— >

* Flow, wash

000 0dp 0eed®

nitrocellulose filter

— 32P
—/



Methods to Measure Binding
Filter Binding

Equilibrate ﬁ (—C_f O

O Q-
This shouldn’t Q npo ﬁ ﬁ
work: why? ﬁ ﬁ

32p
— >

Assumes no re-equilibration \‘\) * Flow, wash

nitrocellulose filter

Know your p
. — >
assumptions!! B e— 2p
——>



Methods to Measure Binding
Filter Binding

Equilibrate == - Fﬁ O
Similar protocols? e @ - Fﬁ
- pull down assay ﬁ . ﬁ T—
(antibody based) —

* Flow, wash

000 0dp 0eed®

nitrocellulose filter

distrust any assays 2p
. . 2P
that involve washing — p



Methods to Measure Binding
Gel shift assay

fTe— C
o %o.
2P
—o np

2p
@ @
32p
ﬁ —/>
2p
32p

—/>

Equilibrate ™

—/>

* Nondenaturing gel



Methods to Measure Binding
Gel shift assay

. = @

Equilibrate ™

32
—/>

p O O ) O T
This shouldn’t T 9 59
work: why? - e—

2p 2p 32p
———
(@l 32p 32p
—> - ( ,
32p 32p O .
—/> —/> » . 2P
2 @
—/>
P
@ —/>
® | e
P P:
@ 7
—/>
32p
@ —/>




Methods to Measure Binding
Equilibrium Dialysis




Methods to Measure Binding
Equilibrium Dialysis

Equilibrate




Methods to Measure Binding
Equilibrium Dialysis

Equilibrate [-----=-----=---s-sssesesecsascnanas .




Binding Assays

or 1€5°
e Non-equilibrium assays thatrggf)arate complexes
— Filter binding
— Pull-down
— Gel shift

e Equilibrium assays
— Fluorescence
e Changes in quantum yield

e Changes in wavelength maxima

e Changes in anisotropy

— Protection assays (quantitative footprinting, etc)
322



Methods to Measure Binding
Fluorescence Anisotropy

Equilibrium!!

—
w

@ T

Anisotropy

—
)

10 20 30 40 50

[L] uM

o



Equilibrium Math

Ky
A+ B=—=AB Knowns
o _[A]5]
d
| AB]
Al= A, -|AB A, =|Al+[AB
B|=B, -|AB B, =|B|+|AB
K,[AB]-[A] B]- (4, -[4B])(8, -[B])
K, x = (AT — x)(BT — x)
Assume Bt >> x Fraction Bound
KdXz(AT—x)BT x=[AB]z Ar By Mz B,
B, + K, A, B, +K,

(B, +K,)x~A,B,



Equilibrium Math

A+ B<

Ky
~ AB

Knowns

=

S

~




Equilibrium Math

Ky
A+ Bz > AB Knowns
Kd
Al=A, -[AB] Ar
B|=B, - _AB_ « B,




Equilibrium Math

Ky
A+ Bz > AB Knowns..........

A = A; _:AB:
B = B, _:AB:

A, =|Al+[AB
B, = :B + :AB




Equilibrium Math

Kd
A+ B===AB Knowns
Kd
Al= A, -|AB| Ar
B]=B, -[AB] B,




Equilibrium Math

Kd
A+ B< > AB Knowns
Kd
Al= A, -|AB A,
B|=B, -[AB B,




Equilibrium Math

Ky
A+ B< >AB Knowns
- _[a]8]
d
AB]
Al= A, -|AB A, =|Al+[AB
B|=B, -|AB B, =|B|+|AB

Assume Br>>x
K x= (AT — x)BT




Equilibrium Math

Ky
A+ B< >AB Knowns
- _[a]8]
d
AB]
Al= A, -|AB A, =|Al+[AB
B|=B, -|AB B, =|B|+|AB

Assume Bt>> x
K x= (AT — x)BT
(B, +K,)x=~A,B,




Equilibrium Math

Ky
A+ B< >AB Knowns
- _[a]8]
d
AB]
Al= A, -|AB A, =|Al+[AB
B|=B, -|AB B, =|B|+|AB

Assume Bt>> x
K x= (AT — x)BT
(B, +K,)x=~A,B,




Equilibrium Math

Ky
A+ B< >AB Knowns
- _[a]8]
d
AB]
Al= A, -|AB A, =|Al+[AB
B|=B, -|AB B, =|B|+|AB

Fraction Bound

Assume Bt >> x A B; [AB] B,

—~

dez(AT —X)BT B, +K, A, B, +K,

(B, +K,)x~A,B, v Br




0.3}

0.2

0.1
0

[L]

Direct fit
K=1.35+0.66 yM

Abound =0.312+0.012

Aunbound =0.087 +0.040

12

v/[L] New

v New

Unweighted fit
K =0.57 +0.07 uM
n = 106

Weighted fit
K=0.75+0.20 uM
n = 099

Fixed
=0.312

q=0.087

Abound
Aunboun



Fluorescence Anisotropy Titration

0.20
I

[P] =10 uM
° 2.%—0.18

0.18
|

Anisotropy
0.14
|

0.12
l
1o

0.10
l

0.09 —|"

0.08
l

0 5 10 15 20 25 30

[ligand] (uM)



Fluorescence Anisotropy Titration

0.20
I

[P] =10 uM
° 2.%—0.18

0.18
|

Anisotropy
0.14
|

0.12
l
1o

0.10
l

0.09 —*/ Ka =6 uM

I I I I I I I
0 5 10 15 20 25 30

0.08
l
<

[ligand] (uM)



Fluorescence Anisotropy Titration

> | [PI=10pM
D g 0.5 Sl 0.18
S . @
- d
0.09 ?_ Kq =6 uM
S I I I I I I I
0 5 10 15 20 25 30
[ligand] (uM)
+ Scatchard Analysis * Scatchard Analysis
— Pick beginning — Calculate v & V/[L]

and end values — Plot v/[L] vs v



Anisotropy

0.09 -

o -

0.12 0.14 0.16 0.18 0.20

0.10

0.

Fluorescence Anisotropy Titration

Scatchard Analysis

— Pick beginning
and end values

[P]=10 uM
o o (e} . o (e}
o ©
(e}
(@]
(e}
(@]
] (e}
(o]
Kqg =6 uM
I I I I I I I
0 5 10 15 20 25 30
[ligand] (uM)

0.18

fo/l

0.05 0.06 0.07 0.08 0.09

0.04

| | | |
0.2 0.4 0.6 0.8

fb

Scatchard Analysis
— Calculate v & v/[L]
— Plot v/[L] vs v




Anisotropy

Fluorescence Anisotropy Titration

0.20
I

[P] =10 uM

K¢ =6 uM

I I I I I I
0 5 10 15 20 25

[ligand] (uM)

- Scatchard Analysis

— Pick beginning
and end values

30

0.18

fo/l

0.05 0.06 0.07 0.08 0.09

0.04

Kd¢ = -1/slope = 30 uM

Scatchard Analysis
— Calculate v & v/[L]
— Plot v/[L] vs v

| O 009_006 - -1
~~~~~~~~~~~~~~~~ 0.2- I | I | -0.033 ” M
| ) Q
I I I I I o
0.2 0.4 0.6 0.8 :
fb




0.0

Anisotropy

0.10 0.12 0.14 0.16 0.18 0.20

0.08

Fluorescence Anisotropy Titration
Kd¢ = -1/slope = 30 uM

[P] =10 uM

Kq=6 uM
I I I I I I I
0 5 10 15 20 25 30
[ligand] (uM)

Scatchard Analysis

— Pick beginning
and end values

fo/l

0.05 0.06 0.07 0.08 0.09

0.04

Scatchard Analysis
— Calculate v & v/[L]
— Plot v/[L] vs v

~ 0 0.09-0.06
' . = -0.033 pM-!
. 02-1.1 % H
— o \......\Q\ ‘
S &
o
0% o
Kd =-I/slope =87 pM o |
e
I I I I I
0.2 0.4 0.6 0.8 1.0
b




Anisotropy

Fluorescence Anisotropy Titration
Kd¢ = -1/slope = 30 uM

S - & o 0.09-0.06 *
=1 [P]=10uM S % 2200 = 0,033 M-
2 | . .~..\\\\ ‘.“‘
o R
o S
Kd = 2.18 = 0.43 uM S
< Au = 0.088 + 0.002 o
S Ab = 0.192 + 0.003 ;i © k
S - 0
o
s
S ] 8 o~
o | ° Ka=-l/slope =87 M ‘o
S
Ke=6puM 2 1
8 _ d — H o o‘““o
e T T T T T T T o
0 5 10 15 20 o5 30 ! ! ! ! !
0.2 0.4 0.6 0.8 1.0
[ligand] (uM) o

Why did the linearized approaches fail miserably?




A+ B—=—AB nowns
Al= 4, -[AB A
B|=B, -|AB B
K,[aB]=[A] B]= (A, -[4B])(B; -[4B])
K, x= (AT — x)(BT — x)

Equilibrium Math




Equilibrium Math

A+B——AB RV 7]
" [aB]
Al=Ar —|AB A, =[A]+[AB
B|=B, -|AB_ B, =|B|+|AB

ASS >> X

x> (A, + B, +K,)x+A,B, =0

2
o) -b + \/b —4ac : 5
ax" +bx+c=0 X = > p—
N WL o




Equilibrium Math

A+ B——AB

¢ [a]8]
[A]=AT _[AB] ‘ [AB]
[]= 8, =48] 4, =[] +[48]

B, =[] +[45]

K,[AB]-[4] B]- (4, -[AB])(B, -[4B])
K, x = (AT — x)(BT — x)

Ass > X

x> (A, + B, +K,)x+A,B, =0

~ -b = \/b2 - 4ac
- 2a

2
ax“  +bx+c=0 X

o (A, + B, +Kd)—\/(AT2+ B, +K,) -4A.B, T 45]




Equilibrium Math

Knowns

A+ B——AB

>
=

[4]- 4, ~[ 48] b s

(2l -las] A =[a]+ (48]
Kk,[AB]=[][B]= (4, ~[4B])(, -[45) By =[]+ A]
K, x = (AT — x)(BT — x)

Ass > X Fraction Bound
x> (A, + B, +K,)x+A,B, =0 [AB]
AT
ax’ +bx+c=0 x=_bi\/b2_4ac
2a

o (A, + B, +Kd)—\/(AT2+ B, +K,) -4A.B, T 45]




Equilibrium Math

A+ B——AB

(A, + B, +K,)- \/(AT +B,+K,) —4A.B,

X = 5 =[AB]

Fraction Bound

[AB] (AT + B, +Kd)—\/(AT + B, +Kd)2 ~4A.B,

A DA,

T

At half-saturation, f=0.5

05 [48]_ (A, + B, +K,)- (A, + B, +K,) - 4A,B,
T B 2A

T T




Equilibrium Math

Ky
P+ L

> P | o

0.20
I

Assume L >> P

Fraction Bound

1
f=
K
1+—¢
LT

At half-saturation, f=0.5

LT=Kd

Anisotropy

0.10
l

0.08
l

No assumptions o 5 10 15 20 25 30
[ligand] (uM)
Fraction Bound

[PL] (P +L,+K,)- \/(PT +L, +K,) -4P.L,

B 2P,

T

At half-saturation, f=0.5

1
Ly = F +K,



0.20
I

Equilibrium Math

0.18
o

o
o

Ky
P+ L > PL o o

Anisotropy
0.12 0.16
|
o

0.10
l

0.08
l

I I I I I I I
0 5 10 15 20 25 30

[PL] (P +L,+K,)- \/(PT +L, +K,) -4P.L,
= PT = 2PT [ligand] (uM)

( Au + (Ab-Au)*( (Kd+Pt+Lt) - sqrt[ (Kd+Pt+Lt)A2 - 4*Pe<Lt | / (2%Pt) ) )

A=Ay + f(Ab-Av)

model <- nls(Anis ~ LigBndGen(l,myKd,10,myAu,myAb), start=list(myKd=4,myAu=0.15,myAb=0.35))



Equilibrium Math [P] =10 uM

Kd
P+ L > PL

Assume L >> P No assumptions
Fraction Bound Fraction Bound
f~ IK =[PL]=(PT+LT+Kd)—\/(PT+LT+Kd)2—4PTLT
1+ —4 P, 2P,
T
At half-saturation, f=0.5 At half-saturation, f=0.5

1
LT=Kd LT=5PT+KCZ



Ky
P+ L

Assume L >> P

Equilibrium Math 71 [P]=10uM
®
> S |
PL )
2
2 o Kd = 2.18 * 0.43 pM
< AU = 0.088 * 0.002
| Ab = 0.192 + 0.003
o
o
2
S | ' I I | | | I
No assumptions o 5 10 15 20 25 30
[ligand] (uM)

Fraction Bound

1
f=
K
1+—4
T

At half-saturation, f=0.5

L, =K,

Fraction Bound

[PL] (P +L, +Kd)—\/(PT +L, +K,) -4P.L,

" p 2P,

T

At half-saturation, f=0.5

1
Ly =P +K,



Levenberg - Marqgardt

The Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm is derived directly from the 2
mean square deviation expressions (8) or (10) and cannot be used X
with deviation functions R other then the square deviation R(d) =
az.

The Levenberg-Marquardt algorithm is a very fast fitting algorithm. 4_/CI Z X2
Its performance, however, depends strongly on the behavior of the > /

function to be fitted as well as on the selected starting parameters. \ d Kd
The classical version of the Levenberg-Marquardt algorithm does \/

not allow for x-errors and minimizes the mean square deviation
(10). The algorithm can be described in words as follows:

Starting from a given set of parameters, the mean square Kd

deviation X2 is calculated. Then the parameters are varied slightly to observe their influence on X2. From this,
the direction in which X? decreases most rapidly can be evaluated and a new set of parameters is chosen. This
procedure is reiterated with this new set of parameters . When the minimum is near, the algorithm goes over to a
more deterministic “guessing” at the position of the minimum and solves some equations to find it. The fitting stops
when the value of X2 does not decrease anymore between successive steps.

The algorithm is described in W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes - the Art
of Scientific Computing, Second Edition, University Press, Cambridge, 1992. When x-errors are specified, the
algorithm is modified in such a way that it minimizes (8). It finds at the same time the set of x-coordinates x" i and the
function parameters that minimize the mean square deviations between the data points (xi , yi ) and the function
values (x" i, f(x" i)).



Levenberg - Marqgardt
gTxt 42X

The Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm is derived directly from the 2 d A
mean square deviation expressions (8) or (10) and cannot be used X d Kd u
with deviation functions R other then the square deviation R(d) =
az.

The Levenberg-Marquardt algorithm is a very fast fitting algorithm. p)
Its performance, however, depends strongly on the behavior of the d Z X
function to be fitted as well as on the selected starting parameters. <

_’ d Ap

The classical version of the Levenberg-Marquardt algorithm does
not allow for x-errors and minimizes the mean square deviation
(10). The algorithm can be described in words as follows:

Starting from a given set of parameters, the mean square Ab

deviation X2 is calculated. Then the parameters are varied slightly to observe their influence on X2. From this,
the direction in which X? decreases most rapidly can be evaluated and a new set of parameters is chosen. This
procedure is reiterated with this new set of parameters . When the minimum is near, the algorithm goes over to a
more deterministic “guessing” at the position of the minimum and solves some equations to find it. The fitting stops
when the value of X2 does not decrease anymore between successive steps.

The algorithm is described in W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes - the Art
of Scientific Computing, Second Edition, University Press, Cambridge, 1992. When x-errors are specified, the
algorithm is modified in such a way that it minimizes (8). It finds at the same time the set of x-coordinates x" i and the
function parameters that minimize the mean square deviations between the data points (xi , yi ) and the function
values (x" i, f(x" i)).



Levenberg - Marqgardt
dZ X’

The Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm is derived directly from the 2
mean square deviation expressions (8) or (10) and cannot be used X
with deviation functions R other then the square deviation R(d) =
az.

The Levenberg-Marquardt algorithm is a very fast fitting algorithm.
Its performance, however, depends strongly on the behavior of the
function to be fitted as well as on the selected starting parameters.

d Ab

local

The classical version of the Levenberg-Marquardt algorithm does minimum
not allow for x-errors and minimizes the mean square deviation
(10). The algorithm can be described in words as follows:

Starting from a given set of parameters, the mean square Ab

deviation X2 is calculated. Then the parameters are varied slightly to observe their influence on X2. From this,
the direction in which X2 decreases most rapidly can be evaluated and a new set of parameters is chosen. This
procedure is reiterated with this new set of parameters . When the minimum is near, the algorithm goes over to a
more deterministic “guessing” at the position of the minimum and solves some equations to find it. The fitting stops
when the value of X2 does not decrease anymore between successive steps.

The algorithm is described in W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes - the Art
of Scientific Computing, Second Edition, University Press, Cambridge, 1992. When x-errors are specified, the
algorithm is modified in such a way that it minimizes (8). It finds at the same time the set of x-coordinates x" i and the
function parameters that minimize the mean square deviations between the data points (xi , yi ) and the function
values (x" i, f(x" i)).



Monte Carlo

X2
The Monte Carlo algorithm

This method randomly varies the parameters of a function within
given intervals. When x-errors are defined, the algorithm also
varies randomly the set of x-coordinates x" i while observing the

given errors and error distributions.

local
For each random guess, XR is calculated according to Eq. (2) and minimum
the parameter sets corresponding to the smallest values of XR are global
remembered. minimum
The strength of this method is also its biggest disadvantage. It Ab

looks for the best parameter set by shooting blindly inside the

given region of parameter space. Although there is an option of letting this parameter space region follow the
position of the currently best parameter set, this algorithm can only

converge very slowly towards the best parameter set.

Its main use is to “scan” parameter space in order to find good parameter starting values for one of the deterministic
fit algorithms, or to try to “jump out” of a local minimum where a deterministic fitting algorithm is stuck.

Since the algorithm is normally used for a first estimate of fitted parameters, it is not recommended to run it with non-
zero x-errors — this merely slows down the algorithm without substantially increasing the accuracy of the estimates
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Overview
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Overview

L,] [L,]  [PL1+2[PL,]+..+nPL,]

[P1+[PL] [P.] ~ [P]+[PL]+[PL,]+...+[PL,]
*H3NCH,COO- + H* K H-Gly+-H - H-Gly + H*
H.NCH,COOH + H+ ka2 H-Gly+-H - Gly-H + H*
K *Gly-H, & Gly-H + HY
H.NCH,COO- + H* ks H-Gly & Gly- + HY
H,NCH,COO- + H* K4 Gly-H & Gly- + H*
Gl)’-H :: Gly- + H*
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(L] _[Ly] _ _[PLI+2[PL]1+ ..+ n[PL,]

[P]+[PL] [P] [P]+[PL]+[PL,]+...+[PL,]
+H3NCH,COO- + H*  k;  H-Gly*-H @& H-Gly + H*
H.NCH,COOH + H* ka2 H-Gly*-H & Gly-H + H*
Ki  *Gly-H, 2 Gly-H + H*

ki + ka2 = K,

H.NCH,COO- + H* ks H-Gly & Gly- + H*
H.NCH.COO- + HY ks Gly-H & Gly + H*
Gly-H & Gly- + HY
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+H3NCH,COO- + H*  k;  H-Gly*-H @& H-Gly + H*
H.NCH,COOH + H* ka2 H-Gly*-H & Gly-H + H*
Ki  *Gly-H, 2 Gly-H + H*

ki + ka2 = K,

H.NCH,COO- + H* ks H-Gly & Gly- + H*
H.NCH.COO- + HY ks Gly-H & Gly + H*
K2 Gly-H & Gly- + HY

| /(l/k3 + |/k4) = K,



V=

*H3NCH,COOH

*H3;NCH,COOH
*H3;NCH,COOH

AL

*H3NCH,COO-
H.NCH,COOH

LA

. o o . - +
Multiple Binding Sites ki = [H[:';'é]l [HH]]
. -Gly*-
Overview
[Gly-H] [H*]
[L,]  [L,]  [PLI+2[PL,]+..+nPL,] ky = -
[P1+[PL] [P.] ~ [P]+[PL]+[PL,]+...+[PL,] [H-Gly*-H]
*H;NCH,COO- + H* ki H-Gly*-H & H-Gly + H*
H.NCH,COOH + HY k2 H-Gly~-H @ Gly-H + H*
K *Gly-H, & Gly-H + HY
k| + ky = K|
H.NCH,COO- + H* € H-Gly & Gly- + H+
H,NCH,COO- + H* K4 Gly-H & Gly- + H*
K2 Gl)’-H :: Gly- + H*

| /(l/k3 + |/k4) = K,
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Overview
[Gly-H] [H*]
[L,] [L,]  [PLI+2[PL,]+..+n[PL,] k, = -
[P1+[PL] [P.] ~ [P]+[PL]+[PL,]+...+[PL,] [H-Gly*-H]
___________________________ microscopic
*H3NCH,COO- + Ht k| H-Gly*-H - H-Gly + H*
H.NCH,COOH + H* k2  H-Gly*-H & Gly-H + H*
K *Gly-H, & Gly-H + HY
k| + ky = K|

___________________________ microscopic

H.NCH,COO- + H* ki H-Gly & Gly- + H*
FENCH,COO- + HY ks Gly-H & Gly + H*
K>, Gl)’-H :: Gly + Ht

| /(l/k3 + |/k4) = K,



Multiple Binding Sites K, = [H['lf'g f';;]
Overview ’

[Gly-H] [H*]

_ [L;] [L;] [PL]+2[PL,]+ ...+ n[PL ] ky, =
"TIPI+[PL] [P1  [P1+[PLI+[PL1+..+[PL ] [H-Gly*-H]

*H3NCH,COOH
___________________________ microscopic
+H3NCH,COOH = +H3NCH,COO- + H* ki  H-Gly*-H & H-Gly + H* |
*H3NCH,COOH = H,NCH,COOH + H* ki  H-Gly*-H g Gly-H + H* |
K +*Gly-H, & Gly-H + H* |
T MACROSCOPIC |
ki + ka = K|
Two ways to deprotonate

__________________________ microscopic
*HiNCH,COO- ¥  H,NCH,COO- + H* ki  H-Gly 2 Gly + H* |
HiNCH,COOH = HuNCH,COO- + H*  (ka  Gly-H 22 Gly + H*

1/ (1/k3 + 1/ks) = K2 MACROSCOPIC
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Multiple, Identical, Independent Binding Sites
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Multiple Classes of Identical, Independent Binding Sites
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Multiple, Identical, Independent Binding Sites
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nk[L]

1+ k[L]

Multiple Binding Sites
Identical, Dependent Sites

No longer the same!
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nk[L] Identical, Dependent Sites
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Multiple Classes of Identical,
Independent Binding Sites
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Equilibrium Math

Ky
A+ Bz > AB Knowns..........

A = A; _:AB:
B = B, _:AB:

A, =|Al+[AB
B, = :B + :AB
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Equilibrium Math
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Fluorescence Anisotropy Titration
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and end values — Plot v/[L] vs v
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Scatchard Analysis
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— Plot v/[L] vs v
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Fluorescence Anisotropy Titration
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Fluorescence Anisotropy Titration
Kd¢ = -1/slope = 30 uM
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Why did the linearized approaches fail miserably?
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Equilibrium Math
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A+ B—=——AB

¢ [a]8]
[A]=AT _[AB] ‘ [AB]
[]= 8, =48] 4, =[] +[48]

B, =[] +[45]

K,[AB]-[4] B]- (4, -[AB])(B, -[4B])
K, x = (AT — x)(BT — x)
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K, x = (AT — x)(BT — x)

Ass > X Fraction Bound
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Equilibrium Math
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( Au + (Ab-Au)*( (Kd+Pt+Lt) - sqrt[ (Kd+Pt+Lt)A2 - 4*Pe<Lt | / (2%Pt) ) )

A=Ay + f(Ab-Av)

model <- nls(Anis ~ LigBndGen(l,myKd,10,myAu,myAb), start=list(myKd=4,myAu=0.15,myAb=0.35))



Equilibrium Math [P] =10 uM

Kd
P+ L > PL

Assume L >> P No assumptions
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Levenberg - Marqgardt

The Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm is derived directly from the 2
mean square deviation expressions (8) or (10) and cannot be used X
with deviation functions R other then the square deviation R(d) =
az.

The Levenberg-Marquardt algorithm is a very fast fitting algorithm. 4_/CI Z X2
Its performance, however, depends strongly on the behavior of the > /

function to be fitted as well as on the selected starting parameters. \ d Kd
The classical version of the Levenberg-Marquardt algorithm does \/

not allow for x-errors and minimizes the mean square deviation
(10). The algorithm can be described in words as follows:

Starting from a given set of parameters, the mean square Kd

deviation X2 is calculated. Then the parameters are varied slightly to observe their influence on X2. From this,
the direction in which X? decreases most rapidly can be evaluated and a new set of parameters is chosen. This
procedure is reiterated with this new set of parameters . When the minimum is near, the algorithm goes over to a
more deterministic “guessing” at the position of the minimum and solves some equations to find it. The fitting stops
when the value of X2 does not decrease anymore between successive steps.

The algorithm is described in W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes - the Art
of Scientific Computing, Second Edition, University Press, Cambridge, 1992. When x-errors are specified, the
algorithm is modified in such a way that it minimizes (8). It finds at the same time the set of x-coordinates x” i and the
function parameters that minimize the mean square deviations between the data points (xi , yi ) and the function
values (x" i, f(x" i)).



Levenberg - Marqgardt
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The Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm is derived directly from the 2 d A
mean square deviation expressions (8) or (10) and cannot be used X d Kd u
with deviation functions R other then the square deviation R(d) =
az.

The Levenberg-Marquardt algorithm is a very fast fitting algorithm. p)
Its performance, however, depends strongly on the behavior of the d Z X
function to be fitted as well as on the selected starting parameters. <

_’ d Ap

The classical version of the Levenberg-Marquardt algorithm does
not allow for x-errors and minimizes the mean square deviation
(10). The algorithm can be described in words as follows:

Starting from a given set of parameters, the mean square Ab

deviation X2 is calculated. Then the parameters are varied slightly to observe their influence on X2. From this,
the direction in which X? decreases most rapidly can be evaluated and a new set of parameters is chosen. This
procedure is reiterated with this new set of parameters . When the minimum is near, the algorithm goes over to a
more deterministic “guessing” at the position of the minimum and solves some equations to find it. The fitting stops
when the value of X2 does not decrease anymore between successive steps.

The algorithm is described in W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes - the Art
of Scientific Computing, Second Edition, University Press, Cambridge, 1992. When x-errors are specified, the
algorithm is modified in such a way that it minimizes (8). It finds at the same time the set of x-coordinates x” i and the
function parameters that minimize the mean square deviations between the data points (xi , yi ) and the function
values (x" i, f(x" i)).



Levenberg - Marqgardt
dZ X’

The Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm is derived directly from the 2
mean square deviation expressions (8) or (10) and cannot be used X
with deviation functions R other then the square deviation R(d) =
az.

The Levenberg-Marquardt algorithm is a very fast fitting algorithm.
Its performance, however, depends strongly on the behavior of the
function to be fitted as well as on the selected starting parameters.

d Ab

local

The classical version of the Levenberg-Marquardt algorithm does minimum
not allow for x-errors and minimizes the mean square deviation
(10). The algorithm can be described in words as follows:

Starting from a given set of parameters, the mean square Ab

deviation X2 is calculated. Then the parameters are varied slightly to observe their influence on X2. From this,
the direction in which X2 decreases most rapidly can be evaluated and a new set of parameters is chosen. This
procedure is reiterated with this new set of parameters . When the minimum is near, the algorithm goes over to a
more deterministic “guessing” at the position of the minimum and solves some equations to find it. The fitting stops
when the value of X2 does not decrease anymore between successive steps.

The algorithm is described in W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes - the Art
of Scientific Computing, Second Edition, University Press, Cambridge, 1992. When x-errors are specified, the
algorithm is modified in such a way that it minimizes (8). It finds at the same time the set of x-coordinates x” i and the
function parameters that minimize the mean square deviations between the data points (xi , yi ) and the function
values (x" i, f(x" i)).



Monte Carlo

X2
The Monte Carlo algorithm

This method randomly varies the parameters of a function within
given intervals. When x-errors are defined, the algorithm also
varies randomly the set of x-coordinates x" i while observing the

given errors and error distributions.

local
For each random guess, XR is calculated according to Eq. (2) and minimum
the parameter sets corresponding to the smallest values of XR are global
remembered. minimum
The strength of this method is also its biggest disadvantage. It Ab

looks for the best parameter set by shooting blindly inside the

given region of parameter space. Although there is an option of letting this parameter space region follow the
position of the currently best parameter set, this algorithm can only

converge very slowly towards the best parameter set.

Its main use is to “scan” parameter space in order to find good parameter starting values for one of the deterministic
fit algorithms, or to try to “jump out” of a local minimum where a deterministic fitting algorithm is stuck.

Since the algorithm is normally used for a first estimate of fitted parameters, it is not recommended to run it with non-
zero x-errors — this merely slows down the algorithm without substantially increasing the accuracy of the estimates
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Michaelis-Menten Kinetics

What assumptions do we make

E+S=FES—-FE+P

d|ES]

=0
dt

substrate in excess
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Rate Equations

First Order Decay
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Rate Equations
Bimolecular Association

k)
A+ B<

~AB

k_y

Approximations

Early time

L8] i [a] 8

ot

AB] << [A], [B]

And excess [B]
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~easy
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Kobs depends on [B]



Rate Equations
Bimolecular Association

A+ B=—==—=AB -8l 1] ]+x [45]

k_ ot

OK, what assumptions?
B in large excess

k.. = k[B]+k,

1600 |-
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kobs

800
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Rate Equations
Bimolecular Association

A+ B=—==—=AB -8l 1] ]+x [45]

k_ ot

OK, what assumptions?
B in large excess

k= k|B|+k,

What is the problem here?

T T T T T T O

lterations: 6

Chi squared = 15.1578

Goodness of fit = 0.1264

Parameters: Standard deviations:

deg = 1.0000

const= 28.4998 Aconst = 186.2243

al = 43.5194 Aai = 4.5993

Confidence intervals ( 95.000% ): [B] uM
const-336.7976 ... 427.8580

af 33.3910 ... 52.5907

(based on 500 converging iterations)



Complex Kinetics
Exact® and Easy”

In the 20th century, we looked for one equation to fit
A single equation predicts [Y] at time t
But maybe we have a program predict [Y] at t

How!?
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Complex Kinetics
Exact* and Easy”

|(| |(2
E + A— B T—> E + D
C
d
LA ) L2 ksl
0
AL [ENLAl- &, [B][C] A s 18]c
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Complex Kinetics
Exact® and Easy”

ki k>

E + A— B T—* E + D
C
:_kl[E][A]
=fa]+ A =(a] -k [E]



Complex Kinetics
Exact® and Easy”

ki k>

E+A—>BT—>E+D
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Complex Kinetics
Exact® and Easy”

ki k>
E + A— B T—* E + D
C
APL_ 4, []lc]
D], =[D] + X2 ar=[D] + &,[B] [C] A
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Complex Kinetics
Exact® and Easy”

ki k>
E + A— B T—* E + D
C
L i (a
JC
cl.. =[c] + 2 a¢=[c] - k,[B] [C] At
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Complex Kinetics
Exact® and Easy”

ki k>

E+A—>BT—>E+D
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Complex Kinetics
Exact® and Easy”

k| k>
E + A— B T—> E + D
C
[A]. =[A], -k [E] [A] At D)., =[P +k[B][C]a¢
[B]....=[Bl,+(k[E],[A], - k[B],[C],)At Cl,\ =IC],-K[B ][ ], At
E]...=E],+(k[B],[C],- k[E],[4])At

Starting concentrations Eo, Ao, Bo, Co, Do

repeat teoral / At times Ql increment by AE, AA, AB, AC, AD in At
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Complex Kinetics

Exact® and Easy”

ki k>

E+A—>BT—>E+D

time <- seq(0, 50, by = 0.01)

# parameters
parameters <- ¢(k1=0.08, k2=0.02)

# initial conditions
state <- ¢(A=5,B=0,C=50,D=0,E=5)

C

# R function to calculate the value of the derivatives at each time value
# Use the names of the variables as defined in the vectors above

multiKin <- function(t, state, parameters){
with(as.list(c(state, parameters)), {
dA = -k1*E*A
dB = k1*E*A - k2*B*C
dC =-k2*B*C
dD = k2*B*C
dE = k2*B*C - kK1*E*A
return(list(c(dA, dB, dC, dD, dE)))
)
}

## Integration with 'ode' - ordinary differential equations
out <- ode(y = state, times = time, func = multiKin, parms = parameters)

ol A]

——=-k [E][A]
%:kl[E][A]—kg[B][C]
A s 18]c

AL 15]lc]

J[E]



Complex Kinetics

Exact® and Easy”

ki

E+ A— B E + D

SuM  5uM

time <- seq(0, 50, by = 0.01)

# parameters: a named vector
parameters <- ¢(k1=0.08, k2=0.02)

# initial condition: a named vector
state <- ¢(A=5,B=0,C=50,D=0,E=5)

# R function to calculate the value of the derivatives at each time value
# Use the names of the variables as defined in the vectors above
multiKin <- function(t, state, parametersX
with(as.list(c(state, parameters)), {
dA = -kK1*E*A
dB =k1*E*A - k2*B*C
dC =-k2*B*C
dD =k2*B*C
dE =k2*B*C - K1*E*A
return(list(c(dA, dB, dC, dD, dE)))
i
}

## Integration with 'ode' - ordinary differential equations
out <- ode(y = state, times = time, func = multiKin, parms = parameters)

## Ploting
out.df = as.data.frame(out)

plot(out.df$time, out.df$A, type="1", col="green")
lines(out.df$time, out.df$B, col="purple")
lines(out.df$time, out.df$C, col="red")
lines(out.df$time, out.df$D, col="blue")
lines(out.df$time, out.df$E, col="brown")

Concentration

C

k>

moom®m>»

25

30




Complex Kinetics
Exact® and Easy”

ki

E+A—>BT—>E+D

time <- seq(0, 50, by = 0.01)

# parameters: a named vector
parameters <- ¢(k1=0.08, k2=0.02)

# initial condition: a named vector
state <- ¢(A=5,B=0,C=50,D=0,E=0.5)

# R function to calculate the value of the derivatives at each time value
# Use the names of the variables as defined in the vectors above
multiKin <- function(t, state, parametersX
with(as.list(c(state, parameters)), {
dA = -kK1*E*A
dB =k1*E*A - k2*B*C
dC =-k2*B*C
dD =k2*B*C
dE =k2*B*C - K1*E*A
return(list(c(dA, dB, dC, dD, dE)))
i
}

## Integration with 'ode' - ordinary differential equations
out <- ode(y = state, times = time, func = multiKin, parms = parameters)

## Ploting
out.df = as.data.frame(out)

plot(out.df$time, out.df$A, type="1", col="green")
lines(out.df$time, out.df$B, col="purple")
lines(out.df$time, out.df$C, col="red")
lines(out.df$time, out.df$D, col="blue")
lines(out.df$time, out.df$E, col="brown")

C

k>

d |B]

dt

0
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Happy Biophysics Week!!!

Hands on with R - simulating kinetics

Mar 25, 2021
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Enzyme Kinetics
2 K
K-1
Ep = [ES] + [F] \E] = BT — |ES]
[S] ~ ST — [ES]

— ki [E][S]— k_1|[ES] — k. |ES|+k, [E]|P] Assume [P] negligible
k1 [E] [S] — k_1 [ES] — k. [ES] ~ 0 Assume steady state
k [E][S] = (k-1 + k) |[ES]

E[S] _ koithke PIIL] _
s SR R K
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Enzyme Kinetics Assume [P] negligible

Assume stea ta
Kq ke ssume steady state

[E] = ET — [ES]
Es S h — KM (Sl Sr—[ES]

(ET — :ES:)(ST — [ES) ~ K'M [ES] Assume substrate in excess
(Pr — [PL]))(Ly — [PL]) = K4 [PL] Assume ligand in excess

(Er — [ES])ST =~ K [ES]
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Enzyme Kinetics

k1 kc
E+S=ES=FE+P
k—1 kr

d|E

% 1y [E|[S] + k_y [ES] + k, [ES] — k, [E] [P

d|S

] [' P] dE <- -k1*E*S + km1*ES + kc*ES - kr*E*P
. dS <- -k1*E*S + km1*ES
dt ke [ES] — K [E][P] dES <- k1*E*S - km1*ES - kc*ES + kr*E*P

dP <- kc*ES - kr'E*P
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EnzKin <- function(t0=0, tf, tincr=(tf-t0)/50, k1p, km1p, kcp, krp=0, EO, SO, ES0=0, P0=0) {

# create a time range
time <- seq(t0, tf, by = tincr)

# parameters:
parameters <- c(k1=k1p, km1=km1p, kc=kcp, kr=krp)0-‘I UM-1s1 0.2 s

# initial condition: E + S=FEFS=F + P

state <- ¢(E=E0, S=S0, ES=ESO0, P=P0) 0.1 s-1 0.001 pM-1 s-1

# R function to calculate the value of the derivatives at each time value
# Use the names of the variables as defined in the vectors above
# define in same order as specified above in state
multiKin <- function(t, state, parameters){
with(as.list(c(state, parameters)), {
dE <- -k1*E*S + kKm1*ES + kc*ES - kr*E*P
dS <- -k1*E*S + km1*ES
dES <- K1*E*S - km1*ES - k¢*ES + kr*E*P
dP <- kc*ES - kr*'E*P

# return derivatives in same relative order as specified above in state
return(list(c(dE, dS, dES, dP)))
)

} ## end of function multiKin

## Integration with 'ode' - ordinary differential equations
out1l <- ode(y = state, times = time, func = multiKin, parms = parameters)

# get results as a dataframe
df <- as.data.frame(out1)

# return a list with things we might want to access directly in plotting, etc
outl <- list("output"=out1, "t"=time, "E"=df$E, "S"=df$S, "ES"=df$ES, "P"=df$P )

return(outl)

}

# call the above function (you can omit optional parameters)

dE <- -k1*E*S + km1*ES + kc*ES - kr*E*P
dS <- -k1*E*S + km1*ES

dES <- K1*E*S - km1*ES - kKc*ES + kr*E*P
dP <- kc*ES - kr'E*P

# plot the results (this will auto-scale to the product rang
plot( out$t, out$P, col="green", type="1", xlab="Time (s)"
lines(out$t, out$E, col="purple")

lines(out$t, out$ES, col="red")

lines(out$t, out$S, col="blue")

legend(200, 3, c("P", "E", "ES", "S"), col = c("green", "pt

out <- EnzKin(tf=15, tincr=0.01, k1p=0.1, km1p=0.1, kcp=0.2, E0=0.2, S0=20.0) ——
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Enzyme Kinetics

| negligib
[Enz] = 0.2 uM i e
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Enzyme Kinetics Assurme [P negligible

E = 0.2 uM
[Enz] = 0.2 p 1uMTst 025 Assume-steady-state

EFE+S=FES=FE+P
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n _|
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c ) | Q
APl ) BS)— K, (B[P E ’
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S o |
tf=15, tincr=0.01, k1p=0.1, km1p=0.1, kep=0.2, S steaady state!
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0 5 10
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Break out exercise

Go to Moodle and download today’s R script
Run it in R to generate the graph we just saw

You will have to install the “deSolve” package

— For help go to the bottom of the “R — fitting data
to a mathematical model” web site created for this
course.

Then just run the script
— source(“EnzymeKinetics.txt")

— (remember not to use “curly” quotes)
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Enzyme Kinetics
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Break out exercise

* Drop the substrate concentration from 20 yM
to2 uM

* Replot
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Enzyme Kinetics Assurme [P negligible

Enz] = 0.2 uyM Assume steady state
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Break out exercise

* Keep substrate at 2 uM
* Run the reaction for 150 s

e Replot
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Enzyme Kinetics
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Break out exercise

e [ et’s an inhibitor

E+1=FEI
* Replot i
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Happy Biophysics Week!!!

Hands on with R - simulating kinetics

Mar 25, 2021
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Enzyme Kinetics
2 K
K-1
Ep = [ES] + [F] \E] = BT — |ES]
[S] ~ ST — [ES]

— ki [E][S]— k_1|[ES] — k. |ES|+k, [E]|P] Assume [P] negligible
k1 [E] [S] — k_1 [ES] — k. [ES] ~ 0 Assume steady state
k [E][S] = (k-1 + k) |[ES]

E[S] _ koithke PIIL] _
s SR R K
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Enzyme Kinetics Assume [P] negligible

Assume stea ta
Kq ke ssume steady state

[E] = ET — [ES]
Es S h — KM (Sl Sr—[ES]

(ET — :ES:)(ST — [ES) ~ K'M [ES] Assume substrate in excess
(Pr — [PL]))(Ly — [PL]) = K4 [PL] Assume ligand in excess

(Er — [ES])ST =~ K [ES]
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Enzyme Kinetics

k1 kc
E+S=ES=FE+P
k—1 kr

d|E

% 1y [E|[S] + k_y [ES] + k, [ES] — k, [E] [P

d|S

] [' P] dE <- -k1*E*S + km1*ES + kc*ES - kr*E*P
. dS <- -k1*E*S + km1*ES
dt ke [ES] — K [E][P] dES <- k1*E*S - km1*ES - kc*ES + kr*E*P

dP <- kc*ES - kr'E*P
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EnzKin <- function(t0=0, tf, tincr=(tf-t0)/50, k1p, km1p, kcp, krp=0, EO, SO, ES0=0, P0=0) {

# create a time range
time <- seq(t0, tf, by = tincr)

# parameters:
parameters <- c(k1=k1p, km1=km1p, kc=kcp, kr=krp)0-‘I UM-1s1 0.2 s

# initial condition: E + S=FEFS=F + P

state <- ¢(E=E0, S=S0, ES=ESO0, P=P0) 0.1 s-1 0.001 pM-1 s-1

# R function to calculate the value of the derivatives at each time value
# Use the names of the variables as defined in the vectors above
# define in same order as specified above in state
multiKin <- function(t, state, parameters){
with(as.list(c(state, parameters)), {
dE <- -k1*E*S + kKm1*ES + kc*ES - kr*E*P
dS <- -k1*E*S + km1*ES
dES <- K1*E*S - km1*ES - k¢*ES + kr*E*P
dP <- kc*ES - kr*'E*P

# return derivatives in same relative order as specified above in state
return(list(c(dE, dS, dES, dP)))
)

} ## end of function multiKin

## Integration with 'ode' - ordinary differential equations
out1l <- ode(y = state, times = time, func = multiKin, parms = parameters)

# get results as a dataframe
df <- as.data.frame(out1)

# return a list with things we might want to access directly in plotting, etc
outl <- list("output"=out1, "t"=time, "E"=df$E, "S"=df$S, "ES"=df$ES, "P"=df$P )

return(outl)

}

# call the above function (you can omit optional parameters)

dE <- -k1*E*S + km1*ES + kc*ES - kr*E*P
dS <- -k1*E*S + km1*ES

dES <- K1*E*S - km1*ES - kKc*ES + kr*E*P
dP <- kc*ES - kr'E*P

# plot the results (this will auto-scale to the product rang
plot( out$t, out$P, col="green", type="1", xlab="Time (s)"
lines(out$t, out$E, col="purple")

lines(out$t, out$ES, col="red")

lines(out$t, out$S, col="blue")

legend(200, 3, c("P", "E", "ES", "S"), col = c("green", "pt

out <- EnzKin(tf=15, tincr=0.01, k1p=0.1, km1p=0.1, kcp=0.2, E0=0.2, S0=20.0) ——
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Enzyme Kinetics

| negligib
[Enz] = 0.2 uM i e
0.1 pM-1st 0.2
E+S=ES=FE+P
0.1s'  0.001 pM-! s-
0 _|
o
O
d[E] < i
—— = —ki [E][S] + k-1 [ES] + ke [ES] — ky [E] [P] e i .
d[él by é\é@‘
—— = —ki [E][S] + k_1 [ES] — S S
c @ _ Q)(b
a[P) g °0
I = K / — li’.r E P E
= = ke [ES] [E] [P] :

S o | /
tf=15, tincr=0.01, k1p=0.1, km1p=0.1, kep=0.2, S steady state!
E0=0.2, S0=20.0
ki=0.1 uM-1 s S 7]
ket =0.1 pM-1 51
Kcat = 0.2 s o _|

.= 0.001 s-1 ° | |
10 15
(Km=1.0puM)

Time (s)




Enzyme Kinetics Assurme [P negligible

E = 0.2 uM
[Enz] = 0.2 p 1uMTst 025 Assume-steady-state

EFE+S=FES=FE+P

0.1 s 0.001 pM-1 s-

n _|
o
®
d[E] < i
—— = —ki [E][S] + k-1 [ES] + ke [ES] — ky [E] [P] e i .
— ES ol
d[S &
L2l = i [B115) + k1 [BS] L] o
c ) | Q
APl ) BS)— K, (B[P E ’
=k [BS) b, ] [P
S o |
tf=15, tincr=0.01, k1p=0.1, km1p=0.1, kep=0.2, S steaady state!
E0=0.2, $0=20.0
ki = 0.1 pM-1 &1 S 7
ki =0.1 pM-1 s
Kcat = 0.2 s o _|
.= 0.001 s ° L | |
0 5 10
(Km=1.0uM)

Time (s)



Break out exercise

Go to Moodle and download today’s R script
Run it in R to generate the graph we just saw

You will have to install the “deSolve” package

— For help go to the bottom of the “R — fitting data
to a mathematical model” web site created for this
course.

Then just run the script
— source(“EnzymeKinetics.txt")

— (remember not to use “curly” quotes)
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Enzyme Kinetics

A (P liaib
[Enz] = 0.2 uM i e
0.1 uM-1s1 0.2 s
E+S=ES=FE+P
0.1 s 0.001 pM-1 s

d[F] - =

S = (B (8] + k1 [ES] + ke [ES] — K, [E] [P) 4| \
— ES (sb@)

]S %

igzz—kﬁEHSy+k4LEﬂ ] _ s @f’

d[P g °7 D%

y © i
L = k. [ES] — k, [E] [P] = ’

dt Q

8§ o

tf=15, tincr=0.01, k1p=0.1, km1p=0.1, kcp=0.2, © steady state!

E0=0.2, S0=20.0

ki =0.1 yM-1 s-1
k.1 =0.1 uyM-1 s-1
Kcat = 0.2 s

r = 0.001 s-1

(Km=1.0 pM)

0.1

0.0

10 15

Time (s)




Break out exercise

* Drop the substrate concentration from 20 yM
to2 uM

* Replot
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Enzyme Kinetics Assurme [P negligible

Enz] = 0.2 uyM Assume steady state
[Enz] =024 0.1 M- g7 0.2 s

E+S=ES=FE+P

0.1 s 0.001 pM-1 s-

d|FE
L)k (B)[S] + ko [BS] + ko [BS) - K [E)[P]
o _

d|S
L ki B8] + ko (2]
L =k 1BS) -k [B][P = s

dt g o

S ~ steady state

0.05
I

0.00

r = 0.001 s

tf=15, tincr=0.01, k1p=0.1, km1p=0.1, kcp=0.2, f)i
E0=0.2, S0=2.0
- P
ki =0.1 pM-1 s-1 — E
k-1 =0.1 yM-1 s-1 — ES
Keat = 0.2 s°1 — S
| |

0 5 10

Time (s)



Break out exercise

* Keep substrate at 2 uM
* Run the reaction for 150 s

e Replot
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Enzyme Kinetics

[Enz] = 0.2 uM
0.1 pM-1s1 0.2 s
E+S=ES=FE+P
0.1s'  0.001 pM-1 -1
v _|
d[E]
— = =~k [E][S] + k1 [ES] + k. [ES] — k, [E] [P
1S
d15] _ —k1 [E][S] + k_1 [ES] 2 -
dl‘ c
d[P] 5
— = ke [ES] — k. [E] [P] =
3
tf=150, tincr=0.01, k1p=0.1, km1p=0.1, kcp=0.2, 0 |
E0=0.2, S0=2.0 ©
ki =0.1 pM-1 -1 steady sta
k.4 =0.1 pM-1 -1 \_
kcat = 02 8_1
.= 0.001 s S - ( | | I
0 50 100 150

Time (s)




Concentration

0.20

0.15

0.10

0.05

0.00

[Enz] = 0.2 uM

Enzyme Kinetics

0.1 uyM-1s1 0.2 s

E+S=ES=FE+P

0.1 s 0.001 pM-1 s
0
o |
[
S
<
£
(]
S
~ steady state 3
0 |
o
P
— E stoady state
— ES§ \
— S
o |/
o
[ [ [ [ [ [ [ [
0 5 10 15 0 50 100 150
Time (s) Time (s)



Break out exercise

e [ et’s an inhibitor

E+1=FEI
* Replot i
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Cooperativity

Structural/chemical adaptation

A + B <>AB //\A AB + C <>ABC

R N
\ /

A+ C<>AC AC + B <> ABC
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A

C
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Cooperativity

Structural/chemical adaptation



Independent Binding

AC + B & ABC




Cooperativity

Local tethering

!

AC + B —




Cooperativity

Simple 3 component

! !

AC + B & ABC



Cooperativity

Simple 3 component

A + B & AB
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Cooperativity

Simple 3 component

A + B & AB

+ +
C C
e ek

AC + B & ABC



Cooperativity
Simple 3 component

How do | know that & applies to BOTH?
Ka
A + B & AB

+ +
C C

e e

AC + B & ABC



K= alm

P el
K=
K=l

|ABC|=aK/ | AB][C]

LS

AC

B

AB

t| oK

ABC



[AB] x4 _ LAB]

" [A][B] * [A][B]
s _ |ABC] a5 _ 0K [ AB]|C]
PR ={ac][] PR = AT )
ac_ |AC] ac _ [AC]
& 1Al Y e
e 1ABC]
* [AB][C]

1| Ka

AC

AC

B

AB

t| oK

ABC
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B = LT
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bl

LS

AC + B

d d
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K =
B = LT
KAl
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LS

AC + B
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Cooperativity

‘E'Q’éoc Cooperativity Effect on Affinity

O 0>1p°S't'Ve ________ increases

R Q=t MOl
’b'QQ a<1 g negative . decreases

e e
AC + B & ABC



Cooperativity

. Cooperativity EEﬁect on Affinity

____________ Q>1_ i postve . increases
____________ a=1__ . i . nhone i .. nhone
at [ C]:O Ligand in a<1 negative . decreases
/ excess
[B] = [B]Total KAB
ad
[AB]  [B]

AL BT Ve A + B & AB



Cooperativity

Cooperativity EEﬁect on Affinity

a>1 positive increases
a=1 none none
a<1 negative i decreases

at saturating [C]  Ligand in

8] 5] / excess B

Total aKa
A /KAB AC + B = ABC

Tota]




Cooperativity

Cooperativity EEffect on Affinity

____________ a>1 i  posiive i increases

____________ Q=1 i  none i none
at [C]=0 a<1 negative . decreases
(B]=[5],,, AB

_[4B] __ [B]
A, B, A+ B = AB
5 + :
E C C
v
at saturating [C] Tl K';‘C Tl O(K,;C
|B]=[Bl,,, o KQB
memnr—, AC+ B = ABC



Cooperativity - Multiple identical sites

at very low [B]
K obs K a

<€

at very high [B]
K obs ~ aK a

AB;

ABn-I

Cooperativity EEffect on Affinity

... Positive increases
"""""""" n ééé&ii}é""""é""'"ééé}éé;éé""""
|AB]
K =
B — AB o =T A][B]
B — ABi.|
[AB, |
—_— ~ a
B +— ABn Kobs [ABH_l][B]



Multiple independent, identical sites

. [Pl K, = LT
Ka =T T PL
P+ L=PL P+L=PL+PLy+..+PL,
_ [bound] [bound] g [boundsites] [boundsites]
Y= [protein] — [unbound] + [bound] ~ [totalsites]  [unboundssites] + [boundssites]

from Scatchard et al., single binding site (n=1)

[B]= Bl

Ligand in excess

v _ﬂ
1—v Ky

| 4

log( ) = log([L]) — log(Ka)

1 —v




Multiple independent, identical sites

. [P][L] o, [P1L]”
Ka="prr e
P+ L=PL P+L=PL+PlLy+ ..+ PL,
_ [bound] [bound] g _ [boundsites] [boundsites]
Y= [protein] — [unbound] + [bound] ~ [totalsites]  [unboundssites] + [boundssites]

from Scatchard et al., single binding site (n=1)

[B]=|Bl,.

Ligand in excess purely empirical!
>
1% B E 9 B [L]n
1—v K, -0 K,
6
log( - —) = log([L]) —log(Ka)  log(y7—5) =n log(|L]) —log(Ka)




T
K, — LI Ol|O

|PL,]
Sites all Other sites
P+L=PL+PlLy+ ..+ PL, empty all full
Max coop
independent sites No coop No coop
0 Early Late
log =n log(|L|) — log( K
9(7—5) =1 log([L]) — log(Ka)
constant
dependent (cooperative) sites
v
log =ng log(|L|) — log( K =
9(7—5) = log([L]) — log(Kq) slope = ny

varies with [L]

The reported Hill coefficient is the maximal ny (slope)

log(Kg)»



am
K, P Olo

|PL,]
Sites all Other sites
P+L=PL+PlLy+ ..+ PL, empty all full
Max coop
dependent (cooperative) sites No coop No coop
) . Early Late
log(1 0) = nyg log([L]) — log(Ky)
— A
varies with [L]
The reported Hill coefficient is the maximal ny (slope)
slope = nH
—
r-empty
—log(K,; ") —



From Wikipedia article on the Hill Equation:

“Transformations of equations into linear forms such as

[P] [L] n this were very useful before the widespread use of
Kj = ———— computers, as they allowed researchers to determine
| [PLn] parameters by fitting lines to data. However, these
transformations affect error propagation, and this may
result in undue weight to error in data points near 0 or |.
P + L — PL + PL2 T .o T PLn, [nb 2] This impacts the parameters of linear regression

lines fitted to the data. Furthermore, the use of computers
enables more robust analysis involving nonlinear

dependent (cooperative) sites regression.”

log(—L—) = ngr log([L]) — log(K2)
1—46 P

varies with [L]

From Wikipedia article on the Hill Equation:

“All of these formulations assume that the

protein has n sites to which ligands can bind. In —_
practice, however, the Hill Coefficient ny rarely SIOPe — N H
provides an accurate approximation of the

number of ligand binding sites on a protein.[5]

[7] Consequently, it has been observed that the

Hill coefficient should instead be interpreted as

an "interaction coefficient" describing the

cooperativity among ligand binding sites.[5]”



Multiple Binding Sites
Identical, Independent Sites

_ nk|[ L] nl
y = QO =
[+ k[L] i = =
k
k
k
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Models for Cooperativity
MWC - Monod, Wyman, Changeux

R - stronger ligand binding (k)

% T - weaker ligand binding (k)

% Mixed R & T - not allowed - two state only



Models for Cooperativity
MWC - Monod, Wyman, Changeux

R - stronger T - weaker

(kr) (kt)



Models for Cooperativity
KNF - Koshland, Nemethy, Filmer

R - stronger ligand binding (k)

% T - weaker ligand binding (ki)

Intermediate states allowed

4 Y N\

YA

'

— 5 iy

vt

TN
N AN

/
NEANRN

\ N\ J

AKA - the Sequential Model

vt
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Cooperativity

Structural/chemical adaptation

A + B <>AB //\A AB + C <>ABC

R N
\ /

A+ C<>AC AC + B <> ABC
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A

C

B
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L

Cooperativity
Inhibition of Ligand Binding
L

P+L<>PL /\\/:\P

= »
X

P+1<>PC

.




S

E+S<>ES

=
X

E+1|<>El

Cooperativity
E+P

Enzyme Inhibition
El +P
S A

/;\\E ES + | <> ES|

A N
S / |
+ El + S <> ESI

y N

E




Thermodynamics Overview

AG" 0
—RTInK = AGO:AHO—TASO K:6_RT an:_AIzC;
1nK=_AH°+AS°
RT ' R
MK AH van't Hoff Equation
T " RT Assuming? ]
AS
AG. AG AH®
InK, —-InK, =——=2++—1 N
" TTRT  RT A+ B=C

AH, AH; AS;-AS;
~RT, ' RT, TR Heat capacity

H C, =| 9
AHY( 1 1) AHY(T,-T _ s
R ( T, Tl) TT, Assuming:



ITC - Isothermal Titration Calorimetry

KQZ%Q

P+L— > PL

AG=RTInQ—-RTInK,

[PL]

[P][L]

A[PL] =-A[P]=-A[L]

AG=0=RTIn —RTInK,

very small heat loss q= AHA [P L ]

0.00
= very small
T heat input 010

-0.1

474
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ITC - Isothermal Titration Calorimetry

K,=1
e pp

P+ L

N

very small heat loss -0.10
A\N\NN -0.15

o
N
[9;]
(I I I

ery small -0.40

;eat input q — AHA[PL]

10 A~
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ITC K = 100 uM
AH = -12 kcal/mol

0.00
-0.05 —
-0.10 —
-0.15 —
-0.20 —
-0.25 —
-0.30 —
-0.35 —

ol N[
\ # Titrations = |5
Integrate each peak Injection volume = 2 pL
AlLTro: = 38 M

Syringe volume = 40 L T[L]stock = 3804 uM

[P] = 0.5 uM

/

/
Cell volume = 200 pL 477




Isothermal Titration Calorimetry (ITC)

g = heat energy added to system

Negative peak:
exothermic

Integrate peak to get q
(ucall/injection)



Isothermal Titration Calorimetry (ITC)

g = heat energy added to system




0.00
-0.05
-0.10
-0.15
-0.20
-0.25
-0.30
-0.35
-0.40

Titration = Vadded

0

1

15

28

30

56

Vnet

370

372

374

376

378

400

426

[L]tot

20

41

61

80

285

500

(P+ L +K,)- \/(PT +L,+K,) —4P,L,

ITC K = 100 uM

AH = -12 kcal/mol

[PL]

0.085

0.144

0.188

0.223

0.370

0.417

2
q=A[PL]
A[PL] g (ucal)
0.085 -0.378
0.060 -0.268
0.044 -0.200
0.034 -0.155
0.006 -0.030
0.002 -0.011

[L]scock = 3804 uM

.V _-AH /

" # Titrations = 28
Injection volume =2 uL
final

[L]7ec = 500 uM

[P] = 0.5 uM

/

/
Cell volume = 370 pL 480




ITC K = 100 uM

0.00 AH = -12 kcal/mol
-0.05
-0.10
-0.15
-0.20
-0.25 = (P +L+K,)- \/(PT +L,+K,) —4P,L,
-0.30 — [PL]= 5
-0.35 —
-0.40 — g=A[PL]-V, -AH
Titration  Vadded  Vnet [L]tot [PL] A[PL] g (ucal)
0 0 370 0 0
1 2 372 20 0.085 0.085 -0.378
2 4 374 41 0144  0.060 -0.268
3 6 376 61  0.188  0.044  -0.200
4 8 378 80 0223  0.034 -0.155
15 30 400 285  0.370  0.006  -0.030
28 56 426 500 0.417  0.002 -0.011 [L]tot

[P]tot 481



ITC - Isothermal Titration Calorimetry

_1
Kﬂ_&d \

P+L— > PL

(@) — —s
: q AHA[PL] 0
2 L
o f o Zqi ‘E‘
I i=0 3
N, I

(=) | pu—| il
[
T &9 T
. < a = = A,

very small heat loss -0.10
AVAVAVAV

/

This is not
going to zero!

very small -0.40
heat input

...why not!

482



ITC AH = -12 kcal/mol

Protein is 0.5 yM

Caveats

AH measured is for the entire sample

Titration  Vadded  Vnet [Lltot [PL] APL] q (ucal)
4 8  _378 80 0223 0034 -0.155
Change in [PL] is 0.034 pM / Buffer —»
(Mis)Match
NaCl is|0 mM \
AH for dissolution of NaCl is +0.9 kcal/mol
Dilution per injection is 8/378= 0.022 \
NaCl is more than 20,000X that of protein |

Assume buffer mismatch = 0.1%

dilution = 0.001x0.022Xx10mM =0.22 4 M

483

2210 mol \( 0.9kcal 10 yecal
g=| 222X mo (09 - )(370><10‘6L) O pcall _ 0,073 pcal
L mol kcal



ITC
Another caveat

Back to Gen Chem & PChem

Definition of “system”

AH measured is for the entire sample

Ligand binding might lead to indirect heats
Protonation of Tris buffer AH = 11.3 kcal/mol

P+ L <==> PL
PHt + L <==> PL + H* AH =-12 kcal/mol
H* + Tris- <==>TrisH  AH = 11.3 kcal/mol

30 mM Tris

AH = -12 kcal/mol

T

484



0.00
-0.05
-0.10
-0.15
-0.20
-0.25
-0.30
-0.35
-0.40

Titration = Vadded

0

1

15

28

30

56

Vnet

370

372

374

376

378

400

426

[L]tot

20

41

61

80

285

500

(P+ L +K,)- \/(PT +L,+K,) —4P,L,

ITC K = 100 uM

AH = -12 kcal/mol

[PL]

0.085

0.144

0.188

0.223

0.370

0.417

2
q=A[PL]
A[PL] g (ucal)
0.085 -0.378
0.060 -0.268
0.044 -0.200
0.034 -0.155
0.006 -0.030
0.002 -0.011

[L]scock = 3804 uM

.V _-AH /

" # Titrations = 28
Injection volume =2 uL
final

[L]7ec = 500 uM

[P] = 0.5 uM

/

/
Cell volume = 370 pL 486




q per injection (ucal) (the measurement!)

ITC

[X]stock = |.035 mM

DH | INJV Xt Mt XMt NDH Fit DY /

0.98819 0.5 0 0.069  0.03619 - 2299.99  -- # TI trati ons = 23
4.01479 1.7 = 0.00249 | 0.06883 | 0.15988 @ 2281.78 @ 2292.82 @ -11.04176
4.07614 1.7 0.01092  0.06827  0.28458  2316.65 2276.50  40.14832 In]ectlon Vo|ume = |7 |JL

3.9874 1.7 = 0.01927 0.06772 0.41028 2266.21 2247.79 18.41812
3.86433 1.7  0.02756 0.06716 0.53699 2196.27 2191.38 4.88868

3.54838 1.7 0.03577 = 0.06661 = 0.66471  2016.70 = 2063.29  -46.5927
3.021 17 0.04392 006607 079344  1716.96  1739.43 -22.46873
1.96747 | 17 0052  0.06553 = 092317 | 1118.20 @ 1096.36 & 21.83654
0.91076 1.7 0.06 0.065  1.05391  517.62 501.20  16.42658
0.402 | 1.7 006794  0.06447 = 1.18565  228.47 227.82 | 0.65576
0.14295 1.7 0.07581  0.06394  1.31841 81.24 120.26  -39.02183
0.02726 = 1.7 0.08361  0.06342  1.45217 15.50 72.24 | -56.74176 |
0.0026 1.7 009134 00629  1.58693 1.48 47.53  -46.04968
-0.04201 | 1.7 0.099 = 0.06238 1.7227 -23.88 33.35 | -57.22539
-0.00329 17 010659 0.06187  1.85948 -1.87 24.51 -26.37896
-0.04848 | 1.7 011411 @ 0.06137 = 1.99727 -27.55 18.65 | -46.20145
-0.02632 17 012156  0.06086  2.13606 -14.96 1457  -29.5273 [M] = 69 |JM
-0.03007 1.7 = 0.12894 = 0.06037 = 2.27586 -17.09 11.61 | -28.69484
-0.01286 1.7 0.13626  0.05987  2.41667 -7.31 9.39  -16.69765
0.01504 1.7 = 0.1435 | 0.05938 | 2.55849 8.55 7.68 | 0.86992
0.02926 1.7 0.15067  0.05889  2.70131 16.63 6.33  10.29665
-0.02331| 1.7 015778 | 0.05841 = 2.84513 -13.25 5.24 | -18.49181 /
0.00538 1.7 0.16481  0.05793  2.98997 3.06 435  -1.29615 Cell volume =201.9 UL 487

-- 0.17178 0.05745 @ --



q per injection (|JCEI|) (the measurement!)

ITC

[X]stock = |.035 mM

DH INJV Xt Mt XMt NDH Fit DY /

0.98819 05 0 0069 003619 - 2299.99 - #Titrations = 23
4.01479 17 | 000249 006883  0.15988 228178 = 2292.82  -11.04176
207614 1. 4014832 Injection volume = |.7 pL
39874 1. 18.41812
3.86433 1. 4.88868
3.54838 | 1. 46.5927

3021 1 122.46873
196747 1. 21.83654
091076 1. g 16.42658

0.402 1. L 0.65576
014295 1. P~ -39.02183
0.02726 1. Y -56.74176 |

0.0026 1. 3 46.04968
004201 1. o 57.22539
000329 1. -26.37896
004848 1. 46.20145
002632 1. 1295273 [M] = 69 UM
003007 1. 128.69484
001286 1. -16.69765
0.01504 | 1. 0.86992
002926 1. - 10.29665
002331 1. time (S) -18.49181 7
Cell volume = 201.9 L 8

-- 0.17178 0.05745 @ --



injection volume (pL) (note: increases Volume) ITC

[X]stock = |.035 mM

DH | INJV Xt Mt XMt NDH Fit DY /

0.98819 0.5 0 0.069  0.03619 - 2299.99  -- # Titrations —_ 23
401479 | 1.7 | 0.00249 | 0.06883 | 0.15988 @ 2281.78 @ 2292.82 @ -11.04176
4.07614 1.7 0.01092  0.06827  0.28458  2316.65 2276.50  40.14832 In]ectlon Vo|ume = |7 |JL

3.9874 1.7  0.01927 0.06772 0.41028 2266.21 2247.79 18.41812
3.86433 1.7 0.02756 0.06716 0.53699 2196.27 2191.38 4.88868

3.54838 | 1.7 | 003577 @ 0.06661  0.66471 | 2016.70 = 2063.29 | -46.5927
3.021 1.7 004392 0.06607 0.79344  1716.96  1739.43 -22.46873
196747 @ 1.7 0052  0.06553 = 092317 | 1118.20 @ 1096.36 & 21.83654
091076 1.7 0.06 0.065  1.05391  517.62 501.20  16.42658
0402 | 1.7 | 0.06794  0.06447 | 1.18565  228.47 227.82 | 0.65576
014295 1.7 007581 0.06394  1.31841 81.24 120.26  -39.02183
002726 | 1.7 008361  0.06342  1.45217 15.50 72.24 | -56.74176 |
0.0026 17 009134 00629  1.58693 1.48 47.53  -46.04968
-0.04201 | 1.7 0.099 = 0.06238 1.7227 -23.88 33.35 | -57.22539
-0.00329 17 010659 0.06187  1.85948 -1.87 24.51 -26.37896
-0.04848 | 1.7 = 0.11411 @ 0.06137 = 1.99727 -27.55 18.65 | -46.20145
-0.02632 17 012156 0.06086  2.13606 -14.96 1457  -29.5273 [M] = 69 |JM
-0.03007 1.7 | 0.12894 = 0.06037 = 2.27586 -17.09 11.61 | -28.69484
-0.01286 1.7 013626  0.05987  2.41667 -7.31 9.39  -16.69765
001504 = 1.7 = 0.1435  0.05938 | 2.55849 8.55 7.68 | 0.86992
002926 1.7 0.15067 0.05889  2.70131 16.63 6.33  10.29665
-0.02331| 1.7 015778 | 0.05841 = 2.84513 -13.25 5.24 | -18.49181 /
0.00538 1.7 0.16481  0.05793  2.98997 3.06 435  -1.29615 Cell volume =201.9 UL 489

-- 0.17178 0.05745 @ --



ITC

[X]tot prior to injection (ligand conc) (corrected for dilution)

[X]stock = |.035 mM

DH | INJV Xt Mt XMt NDH Fit DY /

0.98819 0.5 (] 0.069  0.03619 - 2299.99  -- # Titrations —_ 23
401479 | 1.7 | 0.00249 | 0.06883 | 0.15988 @ 2281.78 @ 2292.82 @ -11.04176
4.07614 1.7 0.01092 0.06827  0.28458  2316.65 2276.50  40.14832 In]ectlon Vo|ume = |7 |JL

3.9874 1.7 = 0.01927 0.06772 0.41028 2266.21 2247.79 18.41812
3.86433 1.7  0.02756 0.06716 0.53699 2196.27 2191.38 4.88868

3.54838 | 1.7 | 0.03577  0.06661  0.66471 = 2016.70 = 2063.29 | -46.5927
3.021 17 0.04392 0.06607 0.79344  1716.96  1739.43 -22.46873
196747 @ 1.7 0.052 006553 = 0.92317 | 1118.20  1096.36 | 21.83654
091076 1.7 0.06 0.065  1.05391  517.62 501.20  16.42658
0402 | 17 | 0.06794 = 0.06447 | 1.18565  228.47 227.82 | 0.65576
0.14295 1.7 0.07581  0.06394  1.31841 81.24 120.26  -39.02183
002726 | 1.7 @ 0.08361  0.06342 = 1.45217 15.50 72.24 | -56.74176 |
00026 1.7 0.09134 00629  1.58693 1.48 47.53  -46.04968
-0.04201 | 1.7 0.099  0.06238 1.7227 -23.88 33.35 | -57.22539
-0.00329 17 0.10659 0.06187  1.85948 -1.87 24.51 -26.37896
-0.04848 | 1.7 @ 0.11411 @ 0.06137 = 1.99727 -27.55 18.65 | -46.20145
-0.02632 17 0.12156  0.06086  2.13606 -14.96 1457  -29.5273 [M] = 69 |JM
-0.03007 1.7 | 0.12894  0.06037 = 2.27586 -17.09 11.61 | -28.69484
-0.01286 1.7 0.13626  0.05987  2.41667 -7.31 9.39  -16.69765
001504 = 1.7 = 0.1435  0.05938 | 2.55849 8.55 7.68 | 0.86992
002926 1.7 0.15067 0.05889  2.70131 16.63 6.33  10.29665
-0.02331| 1.7 @ 0.15778 @ 0.05841 = 2.84513 -13.25 5.24 | -18.49181 /
0.00538 1.7 0.16481  0.05793  2.98997 3.06 435  -1.29615 Cell volume =201.9 UL 490

-- 0.17178 0.05745 @ --



DH
0.98819
4.01479
4.07614

3.9874
3.86433
3.54838

3.021
1.96747
0.91076
0.402
0.14295
0.02726

0.0026
-0.04201
-0.00329
-0.04848
-0.02632
-0.03007
-0.01286
0.01504
0.02926
-0.02331
0.00538

[X]tot prior to injection (ligand conc) (corrected for dilution)

INJV
0.5
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7

Xt

0
0.00249
0.01092
0.01927
0.02756
0.03577
0.04392
0.052
0.06
0.06794
0.07581
0.08361
0.09134
0.099
0.10659
0.11411
0.12156
0.12894
0.13626
0.1435
0.15067
0.15778
0.16481
0.17178

Mt
0.069
0.06883
0.06827
0.06772
0.06716
0.06661
0.06607
0.06553
0.065
0.06447
0.06394
0.06342
0.0629
0.06238
0.06187
0.06137
0.06086
0.06037
0.05987
0.05938
0.05889
0.05841
0.05793
0.05745

XMt
0.03619
0.15988
0.28458
0.41028
0.53699
0.66471
0.79344
0.92317
1.05391
1.18565
1.31841
1.45217
1.58693

1.7227
1.85948
1.99727
2.13606
2.27586
2.41667
2.55849
2.70131
2.84513
2.98997

NDH

2281.78
2316.65
2266.21
2196.27
2016.70
1716.96
1118.20
517.62
228.47
81.24
15.50
1.48
-23.88
-1.87
-27.55
-14.96
-17.09
=731
8.55
16.63
-13.25
3.06

Fit
2299.99
2292.82
2276.50
2247.79
2191.38
2063.29
1739.43
1096.36

501.20
227.82
120.26
72.24
47.53
33.35
24.51
18.65
14.57
11.61
9.39
7.68
6.33
5.24
4.35

DY
-11.04176
40.14832
18.41812
4.88868
-46.5927
-22.46873
21.83654
16.42658
0.65576
-39.02183
-56.74176
-46.04968
-57.22539
-26.37896
-46.20145
-29.5273
-28.69484
-16.69765
0.86992
10.29665
-18.49181
-1.29615

[X]stock = |.035 mM

ITC y

# Titrations = 23
Injection volume = |.7 pL

[M] =69 uM

/

L4

Cell volume =201.9 uL

Vtot - 20'9 UL

Both the cell and the cell stem are filled with macromolecule
solution, but only the active volume is monitored calorimetrically.
Each injection drives liquid from the active volume into the cell
stem (darkened portion representing AV). Consequently, in a
typical experiment, Mt decreases slightly (~1%) with each injection.
We assume no mixing occurs between the active volume and the
cell stem, so the average bulk concentration of macromolecule in
AV is the computed to be the average of Mt(t=0) and Mt

Vioe =238.1 yL  (+20%) 491



ITC

[M]tot prior to injection (corrected for dilution)

[X]stock = |.035 mM

DH | INJV Xt Mt XMt NDH Fit DY /

0.98819 0.5 0 0.069  0.03619 -- 2299.99  -- # Titrations —_ 23
401479 | 1.7 | 0.00249 | 0.06883 | 0.15988 @ 2281.78 @ 2292.82 @ -11.04176
4.07614 1.7 0.01092  0.06827  0.28458  2316.65 2276.50  40.14832 In]ectlon V0|ume = |7 |JL

3.9874 1.7 = 0.01927 0.06772 0.41028 2266.21 2247.79 18.41812
3.86433 1.7  0.02756 0.06716 0.53699 2196.27 2191.38 4.88868

3.54838 | 1.7 | 0.03577 @ 0.06661  0.66471 = 2016.70 = 2063.29 | -46.5927
3.021 17 004392 0.06607 0.79344  1716.96  1739.43 -22.46873
196747 @ 1.7 0052  0.06553 = 092317 | 1118.20 @ 1096.36 & 21.83654
091076 1.7 0.06 0.065 105391  517.62 501.20  16.42658
0402 | 17 | 0.06794  0.06447 | 1.18565  228.47 227.82 | 0.65576
014295 1.7 007581 0.06394  1.31841 81.24 120.26  -39.02183
002726 | 1.7 008361  0.06342  1.45217 15.50 72.24 | -56.74176 |
00026 17 009134  0.0629  1.58693 1.48 47.53  -46.04968
-0.04201 | 1.7 0.099 = 0.06238 1.7227 -23.88 33.35 | -57.22539
-0.00329 17 010659 0.06187  1.85948 -1.87 24.51 -26.37896
-0.04848 | 1.7 = 0.11411 @ 0.06137 = 1.99727 -27.55 18.65 | -46.20145
-0.02632 17 012156  0.06086  2.13606 -14.96 1457  -29.5273 [M] = 69 |JM
-0.03007 1.7 | 0.12894 = 0.06037  2.27586 -17.09 11.61 | -28.69484
-0.01286 1.7 0.13626  0.05987  2.41667 -7.31 9.39  -16.69765
001504 = 1.7 = 0.1435  0.05938 | 2.55849 8.55 7.68 | 0.86992
002926 1.7 0.15067  0.05889  2.70131 16.63 6.33  10.29665
-0.02331| 1.7 015778 | 0.05841  2.84513 -13.25 5.24 | -18.49181 /
0.00538 1.7 0.16481  0.05793  2.98997 3.06 435  -1.29615 Cell volume =201.9 UL 492

-- 0.17178 0.05745 @ --



ITC

Ratio [X]tot/[M]cot

[X]stock = |.035 mM

DH | INJV Xt Mt XMt NDH Fit DY /

0.98819 0.5 0 0.069  0.03619 -- 2299.99  -- # TI trati ons = 23
401479 | 1.7 | 0.00249 | 0.06883 | 0.15988 @ 2281.78 @ 2292.82 @ -11.04176
4.07614 1.7 0.01092  0.06827  0.28458  2316.65 2276.50  40.14832 In]ectlon V0|ume = |7 |JL

3.9874 1.7 = 0.01927 0.06772 0.41028 2266.21 2247.79 18.41812
3.86433 1.7  0.02756 0.06716 0.53699 2196.27 2191.38 4.88868

3.54838 | 1.7 | 0.03577 @ 0.06661  0.66471 = 2016.70 = 2063.29 | -46.5927
3.021 1.7 004392 0.06607 0.79344  1716.96  1739.43 -22.46873
196747 @ 1.7 0052  0.06553 = 092317 | 1118.20 = 1096.36 & 21.83654
091076 1.7 0.06 0.065  1.05391  517.62 501.20  16.42658
0402 | 17 | 0.06794  0.06447 | 1.18565  228.47 227.82 | 0.65576
014295 1.7 007581 0.06394  1.31841 81.24 120.26  -39.02183
002726 | 1.7 008361  0.06342  1.45217 15.50 72.24 | -56.74176 |
00026 17 009134 00629  1.58693 1.48 47.53  -46.04968
-0.04201 | 1.7 0.099 = 006238  1.7227 -23.88 33.35 | -57.22539
-0.00329 17 010659 0.06187  1.85948 -1.87 24.51 -26.37896
-0.04848 | 1.7 = 0.11411 @ 0.06137 = 1.99727 -27.55 18.65 | -46.20145
-0.02632 17 012156  0.06086  2.13606 -14.96 1457  -29.5273 [M] = 69 |JM
-0.03007 1.7 | 0.12894 = 0.06037 = 2.27586 -17.09 11.61 | -28.69484
-0.01286 1.7 0.13626  0.05987  2.41667 -7.31 9.39  -16.69765
001504 = 1.7 = 0.1435  0.05938  2.55849 8.55 7.68 | 0.86992
002926 1.7 0.15067 0.05889  2.70131 16.63 6.33  10.29665
-0.02331| 1.7 015778 | 0.05841  2.84513 -13.25 5.24 | -18.49181 /
0.00538 1.7 0.16481  0.05793  2.98997 3.06 435  -1.29615 Cell volume =201.9 UL 493

-- 0.17178 0.05745 @ --



ITC

q per mole ligand injected

[X]stock = |.035 mM

DH | INJV Xt Mt XMt NDH Fit DY /

0.98819 0.5 0 0.069  0.03619 = -- 2299.99  -- # Titrations —_ 23
401479 | 1.7 | 0.00249 | 0.06883 | 0.15988 @ 2281.78  2292.82 @ -11.04176
4.07614 1.7 0.01092  0.06827  0.28458  2316.65 2276.50  40.14832 In]ectlon V0|ume = |7 |JL

3.9874 1.7 = 0.01927 0.06772 0.41028 2266.21 2247.79 18.41812
3.86433 1.7  0.02756 0.06716 0.53699 2196.27 2191.38 4.88868

3.54838 | 1.7 | 0.03577 @ 0.06661  0.66471 = 2016.70 = 2063.29 | -46.5927
3.021 1.7 004392 0.06607 0.79344  1716.96  1739.43 -22.46873
196747 @ 1.7 0052  0.06553 = 092317 | 1118.20  1096.36 & 21.83654
091076 1.7 0.06 0.065  1.05391  517.62 501.20  16.42658
0402 | 17 | 0.06794  0.06447 | 1.18565  228.47 227.82 | 0.65576
014295 1.7 007581 0.06394  1.31841 81.24 120.26  -39.02183
002726 | 1.7 008361  0.06342  1.45217 15.50 72.24 | -56.74176 |
00026 17 009134 00629  1.58693 1.48 47.53  -46.04968
-0.04201 | 1.7 0.099 = 0.06238 1.7227 -23.88 33.35 | -57.22539
-0.00329 17 010659 0.06187  1.85948 -1.87 24.51 -26.37896
-0.04848 | 1.7 = 0.11411 | 0.06137 = 1.99727 -27.55 18.65 | -46.20145
-0.02632 17 012156  0.06086  2.13606 -14.96 1457  -29.5273 [M] = 69 |JM
-0.03007 1.7 | 0.12894 = 0.06037 = 2.27586 -17.09 11.61 | -28.69484
-0.01286 1.7 013626  0.05987  2.41667 -7.31 9.39  -16.69765
001504 = 1.7 = 0.1435  0.05938 | 2.55849 8.55 7.68 | 0.86992
002926 1.7 0.15067 0.05889  2.70131 16.63 6.33  10.29665
-0.02331| 1.7 015778 | 0.05841 = 2.84513 -13.25 5.24 | -18.49181 /
0.00538 1.7 0.16481  0.05793  2.98997 3.06 435  -1.29615 Cell volume =201.9 UL 494

-- 0.17178 0.05745 @ --



ITC

q per mole ligand injected

Best fit q per mole ligand added [X]stock = 1.035 mM

AN With best
DH | INJV Xt Mt XMt NDH Fit DY fit Kq, AH /

0.98819 0.5 0 0.069  0.03619 - 2299.99 -- # TI tr atio ns = 23
401479 | 1.7 = 0.00249 @ 0.06883 @ 0.15988 @ 2281.78 @ 2292.82 | -11.04176
4.07614 1.7 0.01092  0.06827  0.28458  2316.65 2276.50 40.14832 |njection Volume = |7 lJL
3.9874 1.7 @ 0.01927  0.06772 = 0.41028 @ 2266.21 @ 2247.79 | 18.41812
3.86433 1.7 0.02756  0.06716  0.53699  2196.27 2191.38 4.88868
3.54838 | 1.7 @ 0.03577 @ 0.06661 @ 0.66471 | 2016.70 | 2063.29  -46.5927 . o

3.021 1.7 0.04392 0.06607 0.79344  1716.96 1739.43 -22.46873
1.96747 | 1.7 0.052 = 0.06553 = 0.92317 = 1118.20  1096.36 | 21.83654
0.91076 1.7 0.06 0.065  1.05391 517.62 501.20 16.42658

0.402 = 1.7 | 0.06794 @ 0.06447 @ 1.18565 228.47 227.82 0.65576
0.14295 1.7 007581  0.06394  1.31841 81.24 120.26 -39.02183
0.02726 | 1.7 = 0.08361  0.06342 @ 1.45217 15.50 72.24  -56.74176 |

0.0026 1.7 0.09134 0.0629  1.58693 1.48 47.53 -46.04968
-0.04201 | 1.7 0.099 = 0.06238 1.7227 -23.88 33.35 -57.22539
-0.00329 1.7 0.10659  0.06187  1.85948 -1.87 24.51 -26.37896
-0.04848 1.7 | 0.11411 = 0.06137 = 1.99727 -27.55 18.65 = -46.20145
-0.02632 1.7 0.12156  0.06086  2.13606 -14.96 14.57  -29.5273 [M] — 69 |JM
-0.03007 | 1.7 = 0.12894 = 0.06037 = 2.27586 -17.09 11.61 | -28.69484
-0.01286 1.7 0.13626  0.05987  2.41667 -7.31 9.39 -16.69765
0.01504 | 1.7 0.1435 | 0.05938 & 2.55849 8.55 7.68 0.86992
0.02926 1.7 0.15067  0.05889  2.70131 16.63 6.33  10.29665
-0.02331 1.7 = 0.15778 @ 0.05841  2.84513 -13.25 5.24 -18.49181 /
0.00538 1.7 0.16481  0.05793  2.98997 3.06 435 -1.29615 Ce” Volume = 20 | 9 UL 495

-- 0.17178 0.05745 @ --



ITC

[X]stock = |.035 mM
Residual = NDH - Fit /

DH | INJV Xt Mt XMt NDH Fit DY |
0.98819 0.5 0 0.069  0.03619 -- 2299.99  -- # Titrations - 23
4,01479 | 1.7 | 0.00249 | 0.06883 | 0.15988 @ 2281.78 @ 2292.82 | -11.04176

4.07614 1.7 0.01092  0.06827  0.28458  2316.65 2276.50  40.14832 |njection Volume = |7 lJL

3.9874 1.7 = 0.01927 0.06772 0.41028 2266.21 2247.79 18.41812
3.86433 1.7  0.02756 0.06716 0.53699 2196.27 2191.38 4.88868

3.54838 | 1.7 | 003577 @ 0.06661  0.66471 | 2016.70 = 2063.29 | -46.5927
3.021 17 004392 0.06607 0.79344  1716.96  1739.43 -22.46873
196747 @ 1.7 0052  0.06553 = 092317 | 111820 | 1096.36  21.83654
091076 1.7 0.06 0.065  1.05391  517.62 501.20  16.42658
0402 | 17 | 0.06794  0.06447 | 1.18565  228.47 227.82  0.65576
014295 1.7 007581 0.06394  1.31841 81.24 120.26  -39.02183
002726 | 1.7 008361  0.06342  1.45217 15.50 72.24 | -56.74176 |
00026 17 009134 00629  1.58693 1.48 47.53  -46.04968
-0.04201 | 1.7 0.099 = 0.06238 1.7227 -23.88 33.35  -57.22539
-0.00329 17 010659 0.06187  1.85948 -1.87 24.51 -26.37896
-0.04848 | 1.7 = 0.11411 | 0.06137 = 1.99727 -27.55 18.65 | -46.20145
-0.02632 17 012156  0.06086  2.13606 -14.96 1457  -29.5273 [M] = 69 |JM
-0.03007 1.7 | 0.12894 = 0.06037 = 2.27586 -17.09 11.61 | -28.69484
-0.01286 1.7 013626  0.05987  2.41667 -7.31 9.39 -16.69765
001504 = 1.7 = 0.1435  0.05938 | 2.55849 8.55 7.68 | 0.86992
002926 1.7 0.15067 0.05889  2.70131 16.63 6.33  10.29665
-0.02331| 1.7 015778 | 0.05841 = 2.84513 -13.25 5.24 | -18.49181 /
0.00538 1.7 0.16481  0.05793  2.98997 3.06 435  -1.29615 Cell volume =201.9 UL 496

-- 0.17178 0.05745 @ --



q per injection (ucal)

injection volume (pL)

DH
0.98819
4.01479
4.07614

3.9874
3.86433
3.54838

3.021
1.96747
0.91076
0.402
0.14295
0.02726

0.0026
-0.04201
-0.00329
-0.04848
-0.02632
-0.03007
-0.01286
0.01504
0.02926
-0.02331
0.00538

ITC

[X]tot prior to injection (ligand conc)

\

INJV
0.5
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7

M]io: prior to injection

Ratio [X]eot/[M]cor

q per mole ligand injected

Xt Mt XMt
0 0.069  0.03p{9
0.00249 = 0.06883  0.15988
0.01092  0.06827  0.28458
0.01927 = 0.06772  0.41028
0.02756  0.06716  0.53699
0.03577 = 0.06661 | 0.66471
0.04392  0.06607  0.79344
0.052 | 0.06553 = 0.92317
0.06 0.065  1.05391
0.06794 = 0.06447 | 1.18565
0.07581  0.06394  1.31841
0.08361 = 0.06342  1.45217
0.09134 0.0629  1.58693
0.099 | 0.06238 1.7227
0.10659  0.06187  1.85948
0.11411 = 0.06137  1.99727
0.12156  0.06086  2.13606
0.12894 = 0.06037 = 2.27586
0.13626  0.05987  2.41667
0.1435 | 0.05938 = 2.55849
0.15067  0.05889  2.70131
0.15778 = 0.05841  2.84513
0.16481  0.05793  2.98997

0.17178

0.05745

NDH

2281.78
2316.65
2266.21
2196.27
2016.70
1716.96
1118.20
517.62
228.47
81.24
15.50
1.48
-23.88
-1.87
-27.55
-14.96
-17.09
-7.31
8.55
16.63
-13.25
3.06

Best fit g per mole ligand added

N\
Fit
2299.99
2292.82
2276.50
2247.79
2191.38
2063.29
1739.43
1096.36
501.20
227.82
120.26
72.24
47.53
33.35
24.51
18.65
14.57
11.61
9.39
7.68
6.33
5.24
4.35

Residual

DY | o

-11.04176
40.14832

[X]stock = |.035 mM

¥

# Titrations = 23
Injection volume = |.7 pL

[M] =69 uM

/

L4

Cell volume =201.9 uL

18.41812
4.88868
-46.5927
-22.46873 o
21.83654
16.42658 -
0.65576 % 1000
-39.02183
56.74176 i
-46.04968
-57.22539
-26.37896
-46.20145

2000 |- o

O -

o
9000000000000

-29.5273 0.0 0.5 1.0 1.5 2.0 2.5 3.0

-28.69484
-16.69765
0.86992
10.29665
-18.49181
-1.29615

XMt = [X]tot / [M]tot

497



q per injection (ucal)

injection volume (pL)

DH
0.98819
4.01479
4.07614

3.9874
3.86433
3.54838

3.021
1.96747
0.91076
0.402
0.14295
0.02726

0.0026
-0.04201
-0.00329
-0.04848
-0.02632
-0.03007
-0.01286
0.01504
0.02926
-0.02331
0.00538

[X]tot prior to injection (ligand conc)

\

INJV
0.5
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7

M]io: prior to injection

Ratio [X]eot/[M]cor

q per mole ligand injected

Xt Mt XMt
0 0.069  0.03p{9
0.00249 = 0.06883  0.15988
0.01092  0.06827  0.28458
0.01927 = 0.06772  0.41028
0.02756  0.06716  0.53699
0.03577 = 0.06661 | 0.66471
0.04392  0.06607  0.79344
0.052 | 0.06553 = 0.92317
0.06 0.065  1.05391
0.06794 = 0.06447 | 1.18565
0.07581  0.06394  1.31841
0.08361 = 0.06342  1.45217
0.09134 0.0629  1.58693
0.099 | 0.06238 1.7227
0.10659  0.06187  1.85948
0.11411 = 0.06137  1.99727
0.12156  0.06086  2.13606
0.12894 = 0.06037 = 2.27586
0.13626  0.05987  2.41667
0.1435 | 0.05938 = 2.55849
0.15067  0.05889  2.70131
0.15778 = 0.05841  2.84513
0.16481  0.05793  2.98997
0.17178 = 0.05745 & --

NDH

2281.78
2316.65
2266.21
2196.27
2016.70
1716.96
1118.20
517.62
228.47
81.24
15.50
1.48
-23.88
-1.87
-27.55
-14.96
-17.09
-7.31
8.55
16.63
-13.25
3.06

Best fit g per mole ligand added

N\
Fit
2299.99
2292.82
2276.50
2247.79
2191.38
2063.29
1739.43
1096.36
501.20
227.82
120.26
72.24
47.53
33.35
24.51
18.65
14.57
11.61
9.39
7.68
6.33
5.24
4.35

DY
-11.04176
40.14832
18.41812
4.88868
-46.5927
-22.46873
21.83654
16.42658
0.65576
-39.02183
-56.74176
-46.04968
-57.22539
-26.37896
-46.20145
-29.5273
-28.69484
-16.69765
0.86992
10.29665
-18.49181
-1.29615

ITC

[X]stock = |.035 mM

¥

# Titrations = 23
Injection volume = |.7 pL

[M] =69 uM

Residual f
[ 4
Cell volume =201.9 uL
T l T l T l T l T l T
020 o
2000 | O i
O
T
O 1000 ° -
pd
i e -
°
ok BOG0BOOOO00C
1 1 1 1 1 1 1 1 1 1 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0
XMt = [X]tot / [M]tot
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q per injection (ucal)

injection volume (pL)

DH
0.98819
4.01479
4.07614

3.9874
3.86433
3.54838

3.021
1.96747
0.91076
0.402
0.14295
0.02726

0.0026
-0.04201
-0.00329
-0.04848
-0.02632
-0.03007
-0.01286
0.01504
0.02926
-0.02331
0.00538

ITC

[X]tot prior to injection (ligand conc)

\

INJV
0.5
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7

M]io: prior to injection

Ratio [X]eot/[M]cor

Xt Mt XMt
0 0.069  0.03p{9
0.00249 = 0.06883  0.15988
0.01092  0.06827  0.28458
0.01927 = 0.06772  0.41028
0.02756  0.06716  0.53699
0.03577 = 0.06661 | 0.66471
0.04392  0.06607  0.79344
0.052 | 0.06553 = 0.92317
0.06 0.065  1.05391
0.06794 = 0.06447 | 1.18565
0.07581  0.06394  1.31841
0.08361 = 0.06342  1.45217
0.09134 0.0629  1.58693
0.099 | 0.06238 1.7227
0.10659  0.06187  1.85948
0.11411 = 0.06137  1.99727
0.12156  0.06086  2.13606
0.12894 = 0.06037 = 2.27586
0.13626  0.05987  2.41667
0.1435 = 0.05938 = 2.55849
0.15067  0.05889  2.70131
0.15778 = 0.05841  2.84513
0.16481  0.05793  2.98997

0.17178

0.05745

q per mole ligand injected

NDH

2281.78
2316.65
2266.21
2196.27
2016.70
1716.96
1118.20
517.62
228.47
81.24
15.50
1.48
-23.88
-1.87
-27.55
-14.96
-17.09
-7.31
8.55
16.63
-13.25
3.06

Best fit g per mole ligand added

N\
Fit
2299.99
2292.82
2276.50
2247.79
2191.38
2063.29
1739.43
1096.36
501.20
227.82
120.26
72.24
47.53
33.35
24.51
18.65
14.57
11.61
9.39
7.68
6.33
5.24
4.35

DY | o
-11.04176
40.14832
18.41812
4.88868
-46.5927
-22.46873
21.83654
16.42658
0.65576
-39.02183
-56.74176
-46.04968
-57.22539
-26.37896
-46.20145
-29.5273
-28.69484
-16.69765
0.86992
10.29665
-18.49181
-1.29615

Residual f

[X]stock = |.035 mM

¥

# Titrations = 23
Injection volume = |.7 pL

[M] =69 uM

L4

Cell volume =201.9 uL

Sources of error?

Buffer mismatch, etc!?
Is this a problem here?

No, but maybe....?



q per injection (ucal)

injection volume (pL)

DH
0.98819
4.01479
4.07614

3.9874
3.86433
3.54838

3.021
1.96747
0.91076
0.402
0.14295
0.02726

0.0026
-0.04201
-0.00329
-0.04848
-0.02632
-0.03007
-0.01286
0.01504
0.02926
-0.02331
0.00538

ITC

[X]tot prior to injection (ligand conc)

\

INJV
0.5
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7

M]io: prior to injection

Ratio [X]eot/[M]cor

Xt Mt XMt
0 0.069  0.03p{9
0.00249 = 0.06883  0.15988
0.01092  0.06827  0.28458
0.01927 = 0.06772  0.41028
0.02756  0.06716  0.53699
0.03577 = 0.06661 | 0.66471
0.04392  0.06607  0.79344
0.052 | 0.06553 = 0.92317
0.06 0.065  1.05391
0.06794 = 0.06447 | 1.18565
0.07581  0.06394  1.31841
0.08361 = 0.06342  1.45217
0.09134 0.0629  1.58693
0.099 | 0.06238 1.7227
0.10659  0.06187  1.85948
0.11411 = 0.06137  1.99727
0.12156  0.06086  2.13606
0.12894 = 0.06037 = 2.27586
0.13626  0.05987  2.41667
0.1435 = 0.05938 = 2.55849
0.15067  0.05889  2.70131
0.15778 = 0.05841  2.84513
0.16481  0.05793  2.98997

0.17178

0.05745

q per mole ligand injected

NDH

2281.78
2316.65
2266.21
2196.27
2016.70
1716.96
1118.20
517.62
228.47
81.24
15.50
1.48
-23.88
-1.87
-27.55
-14.96
-17.09
-7.31
8.55
16.63
-13.25
3.06

Best fit g per mole ligand added

N\
Fit
2299.99
2292.82
2276.50
2247.79
2191.38
2063.29
1739.43
1096.36
501.20
227.82
120.26
72.24
47.53
33.35
24.51
18.65
14.57
11.61
9.39
7.68
6.33
5.24
4.35

Residual

DY | o
-11.04176
40.14832
18.41812
4.88868
-46.5927
-22.46873
21.83654
16.42658
0.65576
-39.02183
-56.74176
-46.04968
-57.22539
-26.37896
-46.20145
-29.5273
-28.69484
-16.69765
0.86992
10.29665
-18.49181
-1.29615

[X]stock = |.035 mM

¥

# Titrations = 23
Injection volume = |.7 pL

[M] =69 uM

/

L4

Cell volume =201.9 uL

Sources of error?

Errors in [ X]stock

Errors in [M]



q per injection (ucal)

injection volume (pL)

DH
0.98819
4.01479
4.07614

3.9874
3.86433
3.54838

3.021
1.96747
0.91076
0.402
0.14295
0.02726

0.0026
-0.04201
-0.00329
-0.04848
-0.02632
-0.03007
-0.01286
0.01504
0.02926
-0.02331
0.00538

ITC

[X]tot prior to injection (ligand conc)

\

INJV
0.5
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7

M]io: prior to injection

Ratio [X]eot/[M]cor

Xt Mt XMt
0 0.069  0.03p{9
0.00249 = 0.06883  0.15988
0.01092  0.06827  0.28458
0.01927 = 0.06772  0.41028
0.02756  0.06716  0.53699
0.03577 = 0.06661 | 0.66471
0.04392  0.06607  0.79344
0.052 | 0.06553 = 0.92317
0.06 0.065  1.05391
0.06794 = 0.06447 | 1.18565
0.07581  0.06394  1.31841
0.08361 = 0.06342  1.45217
0.09134 0.0629  1.58693
0.099 | 0.06238 1.7227
0.10659  0.06187  1.85948
0.11411 = 0.06137  1.99727
0.12156  0.06086  2.13606
0.12894 = 0.06037 = 2.27586
0.13626  0.05987  2.41667
0.1435 = 0.05938 = 2.55849
0.15067  0.05889  2.70131
0.15778 = 0.05841  2.84513
0.16481  0.05793  2.98997

0.17178

0.05745

q per mole ligand injected

NDH

2281.78
2316.65
2266.21
2196.27
2016.70
1716.96
1118.20
517.62
228.47
81.24
15.50
1.48
-23.88
-1.87
-27.55
-14.96
-17.09
-7.31
8.55
16.63
-13.25
3.06

Best fit q per mole ligand added

N\
Fit
2299.99
2292.82
2276.50
2247.79
2191.38
2063.29
1739.43
1096.36
501.20
227.82
120.26
72.24
47.53
33.35
24.51
18.65
14.57
11.61
9.39
7.68
6.33
5.24
4.35

DY | o
-11.04176
40.14832
18.41812
4.88868
-46.5927
-22.46873
21.83654
16.42658
0.65576
-39.02183
-56.74176
-46.04968
-57.22539
-26.37896
-46.20145
-29.5273
-28.69484
-16.69765
0.86992
10.29665
-18.49181
-1.29615

Residual f

[X]stock = |.035 mM

¥

# Titrations = 23
Injection volume = |.7 pL

[M] =69 uM

L4

Cell volume =201.9 uL

Sources of error?
Injection volume

Random
Systematic

How would that present?
Volume — cumulative

Impacts both x and y

in nonlinear ways



_Mx]1 6
[(M][x] (1-6) x]
o = [ X]H[MX]=[X]+0[M]

tot

ITC

[X]stock = |.035 mM

¥

# Titrations = 23
Injection volume = |.7 pL

[M] =69 uM

/

L4
Cell volume =201.9 uL



ITC

[X]stock = |.035 mM

¥

# Titrations = 23
Injection volume = |.7 pL

[M] =69 uM

/

L4
Cell volume =201.9 uL



# Titrations = 23
Injection volume = |.7 pL

[X]stock = 1.035 mM
ITC ﬁ,

[M] =69 uM

/

L4
Cell volume =201.9 uL




ITC

[X]stock = |.035 mM

¥

# Titrations = 23
Injection volume = |.7 pL

[M] =69 uM

/

L4
Cell volume =201.9 uL



6
Xtot + 1 + Xtot
M tot KM tot M tot

ITC

[X]stock = |.035 mM

# Titrations = 23

Injection volume = |.7 pL

[M] =69 uM

/

L4
Cell volume =201.9 uL

Q=0xM, xV,xAH



[X]stock = |.035 mM

ITC y

Injection volume = |.7 pL

# Titrations = 23

[M] =69 uM

/

L4
Cell volume =201.9 uL

Q=0xM, xV,xAH




ITC

[X]stock = |.035 mM

¥

# Titrations = 23
Injection volume = |.7 pL

[M] =69 uM

/

L4
Cell volume =201.9 uL

Q=0xM, xV,xAH

g (ncal/s)

time (s)



[X]stock = |.035 mM

ITC y

# Titrations = 23
Injection volume = |.7 pL

[M] =69 uM

/

L4
Cell volume =201.9 uL

But remember that there is Q=0xM, XV, xAH

this exclude volume stuff

AQ(i)=Q(1')+de |:Q(j)+zQ(j_1)}_Q(j_l)



ITC

From the Manual

“Equation 14 and Equation 15
can be solved for [X] either in
closed form or (as done in
MicroCal ITC Software)
numerically by using Newton’s
Method if parameters n1, n2, K1,
and K2 are assigned. Both 61
and 62 may then be obtained
from Equation 11 above.”



g (ucal/s)

ITC
Practical

T

Baseline subtraction

f 4fv




g (ucal/s)

ITC
Practical

Baseline subtraction
1l
> [/ V/

time (t)

Over-smoothing



[S]stock = |.035 mM

ITC v
Enzyme Kinetics

. P pcal »

AH XV,

[E] = 5.00 uM

_k,|E].[S], Assuming [S]r>>[E]r
t - [S]T + Km

Assuming steady state kinetics

E+S#ES%E+P



Velocity = R, =

g (ucal/s)

substrate

[S]stock = |.035 mM

ITC v
Enzyme Kinetics

P /zca%

AH)(‘/O _(ﬂca%nozs

-

X (Liters)

[E] = 5.00 uM

_k,|E].[S], Assuming [S]r>>[E]r
=
[S]T +K, Assuming steady state kinetics

E+S#ES%E+P

time (t)



[S]stock = |.035 mM

ITC ¥
Enzyme Kinetics

(P e 1 +Vo

Velocity = R, = A Hvx Vv _(MV 1 5] (Liters)
O mo.

[E] = 5.00 uM

o k. |E].|S].  Assuming [S]r>>[E]r
=
[S]T +K, Assuming steady state kinetics

steady state
Pl

E+S#ES%E+P

substrate

g (ucal/s)

time (t)



g (ucal/s)

[S]stock = |.035 mM

ITC v
Enzyme Kinetics

. P pcal
Velocity = R, = 7~ " i ~ ///VO
AH ‘/0 ( mot X (Liters) [E] = 5.00 uM

substrate

_k,|E].[S], Assuming [S]r>>[E]r

=
[S]T +K, Assuming steady state kinetics

k
steady state E+S k:fES —tw sE4+ P

ipa
0

Heat generate in consuming all of S
5], <V,

ipa
0

reaction complete

time (t)



g (ucal/s)

[S]stock = |.035 mM

ITC v
Enzyme Kinetics

P cal
Velocity = R, = = " , //’VO
A H X ‘/0 ( %HO] s ) (Liters) [E] = 5.00 uM
_k,|E].[S], Assuming [S]r>>[E]r
L=
[S]T +K, Assuming steady state kinetics

.............................. seady stre E+Se2ES—'=>E+P

8 [Pat

g AH =—2—— Heat generate in consuming all of S

7 [S], %V,

Then fitVelocity (R¢) vs [S]t as with traditional kinetics

ipa
0

reaction complete

Assumes no back or background reaction (e.g. hydrolysis)

time (t)



g (pcal/s)

Velocity = R, =

_kulEL[S];
5], + K.,

substrate

P

[S]stock = |.035 mM

ITC J
Enzyme Kinetics

/zca%

-

AHXV, s

4——— substrate

4——— substrate

Assuming [S]T>>[E]r

X (Liters)
[E] = 5.00 uM

Assuming steady state kinetics

E+S#ES%E+P

Assumes build up of product
does not slow reaction

time (t)



Abs = nnn
Conc = xxx NanoDrop

(routine UV-Vis more generally)

Let’s simulate a spectrum in R (2 — T )
Normal (Gaussian) distribution f(z) = ' ‘217rc7€_ 2072
X = seq(240,500, by=1) Q\@-\\,
y = dnorm(x, mean, sd) y = dnorm(x, 260, 10) 0&
plot(x, y, type="I") \,\\&{{

I I I I I I
250 300 350 400 450 500

wavelength (nm)



Abs = nnn

Conc = xxx NanoDroP 1
(routine UV-Vis more generally) Energy \
Let’s simulate a spectrum in R 1 (2 — Zppa )2
Normal (Gaussian) distribution  f(z) = - ——¢ 202
X = seq(240,500, by=1) Q\‘é\\'
y = dnorm(x, mean, sd) y = dnorm(x, 260, 10) 0&
plot(x, y, type="1") \,\\c,o{{

I I I I I I
250 300 350 400 450 500

wavelength (nm)



hypothesis: scattering!

NanoDrop Energy o %
(routine UV-Vis more generally)
Let’s simulate a spectrum in R (% _ %maw)‘z
Normal (Gaussian) distribution [f(A) = 4 leye_ 202

X = seq(240,500, by=1)

spectrm <- function(x, Imax, lwid, inten) (inten * dnorm(1/x, 1/Imax, sd=(1/Imax - 1/(Imax+Ilwid))) )

plot(x, spectrm(x, 260, 20, 10), type="1") 1 1
o= —=—
= A )\h al fwidth
S _ i A,
s ° s ¥ &
< g S O&Q
: } ’ b
° T I ! ' ' ! ° 1 I I I I I
250 300 350 400 450 500 250 300 350 400 450 500

wavelength (nm) wavelength (nm)



1
Energy o< —

NanoDrop \
(routine UV-Vis more generally) 1 1 )
Let’s simulate a spectrum in R 1 - (X - XmmI
o fA)=A——e 20
Normal (Gaussian) distribution V2To
14
— 24 =1 , /\
X = seq(240,500, by=1) Focatter(N) = Ascatter v
spectrm <- function(x, Imax, lwid, inten) ( inten * dnorm(1/x, 1/Imax, sd=(1/Imax - 1/(Imax+Ilwid))) )
scattr <- function(x,intenSc) (intenSc * mean(x)"4 / x"\4) o — l _ !

A )\h al fwidth

15000
I
15000
I

Absorption

5000
5000

¢

I I I I I I I I I I I I
250 300 350 400 450 500 250 300 350 400 450 500

0
I

0
I

wavelength (nm) wavelength (nm)



1
NanoDrop Energy o 3
TO37 — TECHNICAL BULLETIN

NanoDrop Spectrophotometers (routine UV-Vis more generally)
Thermo Scientific NanoDrop Spectrophotometers use a 1 1 9
bichromatic absorbance correction for nucleic acid and ( S N )
protein A280 measurements. This type of correction is /\ )\ maax
performed to offset the effect of instrument noise and light 1 — p 9

e 20
/—\4

scattering particulates on low concentration nucleic acid and f ( /\) — 14 -
protein sample measurements. Due to the lack of absorbance . /2

by nucleic acids or proteins at higher UV wavelengths, it has no
been our general observation that any UV wavelength at or

Absorption

above 320 nm can be utilized for this bichromatic correction. fscatter ()\) p— JAScatter /\4
This is good!
o
S 1 1
— o= — —

O

— A >\11alf'lLr'idth
The software for the NanoDrop 1000 and

8 NanoDrop 8000 Spectrophotometers

o automatically subtracts the 340 nm absorbance

Lo from the entire spectrum. The NanoDrop
2000/2000c software allows for the selection of

o any wavelength for this bichromatic correction

I I I I I I (the default setting is 340 nm) or for de-selection
of this function. The NanoDrop Lite subtracts the

250 300 350 400 450 500 absorbance at 365 nm from the 260 nm and 280

nm wavelength absorbance, respectively.
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NanoDrop Spectrophotometers (routine UV-Vis more generally)

1 2

Thermo Scientific NanoDrop Spectrophotometers use a 1
bichromatic absorbance correction for nucleic acid and ( X - X )
max

protein A280 measurements. This type of correction is
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€ 2672
been our general observation that any UV wavelength at or

performed to offset the effect of instrument noise and light 1 —
scattering particulates on low concentration nucleic acid and
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by nucleic acids or proteins at higher UV wavelengths, it has
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15000
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This is not so good...

The software for the NanoDrop 1000 and
NanoDrop 8000 Spectrophotometers
automatically subtracts the 340 nm absorbance
from the entire spectrum. The NanoDrop
2000/2000c software allows for the selection of
- any wavelength for this bichromatic correction
""""""""""""" (the default setting is 340 nm) or for de-selection
of this function. The NanoDrop Lite subtracts the

250 300 350 400 450 500 absorbance at 365 nm from the 260 nm and 280

nm wavelength absorbance, respectively.
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NanoDrop

TO37 — TECHNICAL BULLETIN
NanoDrop Spectrophotometers

Thermo Scientific NanoDrop Spectrophotometers use a
bichromatic absorbance correction for nucleic acid and
protein A280 measurements. This type of correction is
performed to offset the effect of instrument noise and light
scattering particulates on low concentration nucleic acid and
protein sample measurements. Due to the lack of absorbance
by nucleic acids or proteins at higher UV wavelengths, it has
been our general observation that any UV wavelength at or
above 320 nm can be utilized for this bichromatic correction.

) = A—r
=4
fscatter(/\) — JASCQ‘tt(:‘T

Pedestal measurements made using NanoDropTM
spectrophotometers utilize shorter pathlengths than the
classical 10 mm pathlength associated with most cuvettes,
enabling measurements of highly concentrated samples.
These concentrated samples have very high A260 nm or
A280 nm values and therefore the normalization
wavelength for the NanoDrop 1000, 2000/2000c and 8000
is positioned at 340 nm, an additional 20 nm further than
the customary 320 nm. Similarly, the normalization
wavelength for the NanoDrop Lite is positioned at 365 nm.

15000
I

Absorption

5000
I

° T 4 | | |

wavelength (nm)
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(routine UV-Vis more generally)
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€ 20’2
24
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A )\h al fwidth

g =

The software for the NanoDrop 1000 and
NanoDrop 8000 Spectrophotometers
automatically subtracts the 340 nm absorbance
from the entire spectrum. The NanoDrop
2000/2000c software allows for the selection of
any wavelength for this bichromatic correction
(the default setting is 340 nm) or for de-selection
of this function. The NanoDrop Lite subtracts the
absorbance at 365 nm from the 260 nm and 280
nm wavelength absorbance, respectively.
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Fitting Spectra
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f(x) = Ae

Spectral Deconvolution

(x-x ) _(x—xz ) (x-x; ) _(x—x4 )

2 2 B 2 2
2 A} + A2€ 2A5 + A3€ 2 A% + A4€ 2 Ay +mx + b

i My
0 T W N lll‘m 'JT l ml “[ ‘ x ‘ .u‘ | \H l “i.‘ tw"_ﬂ“ni ‘ "'m‘k“ Il]l l"
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Absorbance

15000

5000

0

UV-Vis Proteins

(routine UV-Vis more generally)

spectraScattPlot(x, list(c(212,30,12), ¢(260, 7,2), c(272, 8,3), c(287,14,3)), 0)

272 nm, 0=8 nm
260 nm, o=7 nm
287 nm, o=14 nm (Tyr?)

Example only
not intended to be real...
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Proteins

(routine UV-Vis more generally)

spectraScattPlot(x, list(c(212,30,12), ¢(260, 7,2), c(272, 8,3), c(287,14,3)), 0)

272 nm, 0=8 nm

260 nm, o=7 nm
287 nm, o=14 nm (Tyr?)

Example only
not intended to be real...
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Oligonucleotide Extinction Coefficients
SOXIDT 5"-AGGCACGGTCACGTGGCAC-3

INTEGRATED DNA TECHNOLOGIES
€260 - not the absorption maximum for each!

By how much does sequence composition affect extinction

coefficient? 65160 — 15—100 6%60 — 8 700

Would you believe that the extinction coefficient for a

sequence as short as 6 bases can vary just by arranging the

bases in a different order? Additionally, base composition can

lead to significant differences in the extinction coefficient. See Nearest neighbor values for €260 of dNTPs are:
Table 1 for examples.

Greatest accuracy is therefore achieved when the exact value
of €260 is calculated for each oligo. Further, it is necessary to
take into account the presence of oligo modifications, such as
fluorescent dyes, which may have significant absorbance at
260 nm.

For these reasons, IDT calculates the extinction coefficient for
every oligo synthesized using a nearest neighbor method. This
value is then used to measure the yield for each
oligonucleotide produced.

https://www.idtdna.com/pages/tools



Total Internal Reflectance

Molecular Cell 24, 317-329, November 3,2006
Single-Molecule Biology: Jordanka Zlatanoval, and

What Is It and How Does It Work? Kensal van Holde

<

_ 2 oscillating field

g Absorption
()

g9

" g water

In TIR, the excitation light is directed toward an interface between two media of different refractive indices (i.e., from an optically
denser medium, such as a glass slide, into a less-dense medium, such as water) (Axelrod, 2001).The incident angle of the beam is set
larger than a certain critical angle, defined by the properties of the two media; all the light is reflected off the glass and does not
penetrate into the solution (Figure |A). How-ever, an electromagnetic field that oscillates with the same frequency as the incident
light does form in the less-dense medium (the water on the other side). Because this electromagnetic field (also called evanescent
field or wave) decays exponentially from the glass surface, it is capable of exciting fluorophores only in a very small volume close to
the surface, thus effectively preventing out-of-focus fluorescence background.The excitation light itself is cleanly removed from the
observation chamber, reducing the background even further.
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denser medium, such as a glass slide, into a less-dense medium, such as water) (Axelrod, 2001).The incident angle of the beam is set
larger than a certain critical angle, defined by the properties of the two media; all the light is reflected off the glass and does not
penetrate into the solution (Figure |A). How-ever, an electromagnetic field that oscillates with the same frequency as the incident
light does form in the less-dense medium (the water on the other side). Because this electromagnetic field (also called evanescent
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the surface, thus effectively preventing out-of-focus fluorescence background.The excitation light itself is cleanly removed from the
observation chamber, reducing the background even further.



Surface Plasmon Resonance

As before, the E field penetrates a short (tens of nm) distance into a medium of a lower refractive index creating
an exponentially attenuated evanescent wave.

N\

523



Surface Plasmon Resonance

Surface Plasmons - collective, quantized oscillations of conduction band electrons in a metal

As before, the E field penetrates a short (tens of nm) distance into a medium of a lower refractive index creating
an exponentially attenuated evanescent wave.

If the quartz (glass) is coated with a thin layer of metal (gold), and light is monochromatic and p-polarized, the
intensity of the reflected light is reduced at a specific incident angle producing a sharp shadow (called surface
plasmon resonance) due to the resonance energy transfer between evanescent wave and surface plasmons.

The resonance conditions are influenced by the material adsorbed onto the thin metal film. A linear relationship
exists between the resonance energy and the mass concentration of biochemically relevant molecules such as
proteins, sugars and DNA.

\/ \/ \/ \/ Thin metal (Au) layer

Resonant absorption

A\
4

9|3ue dip

Electrons in the Au layer show a resonant
absorption at a specific frequency 523



Surface Plasmon Resonance

Surface Plasmons - collective, quantized oscillations of conduction band electrons in a metal
Have wave/particle duality like photons, electrons

The SPR signal which is expressed
in resonance units is therefore a

measure of mass concentration at
not detected Tees S e

the sensor chip surface.
detected QQ QQ QQ Q gg QQ QQ Your bound protein
N N\ ya Dextran layer
\/ \/ \/ \/ Thin metal (Au) layer

N\
Y 4

9|3ue dip

Electrons in the Au layer show a resonant
absorption at a specific frequency 524



Surface Plasmon Resonance

Surface Plasmons - collective, quantized oscillations of conduction band electrons in a metal
Have wave/particle duality like photons, electrons

not detected

detected QD QQ QQ 9 gg QQ QQ Your bound protein
™ A\ £ Dextran layer
\/ \/ \/ \/ Thin metal (Au) layer

9|3ue dip

Time

N\
Y 4

9|3ue dip

Electrons in the Au layer show a resonant
absorption at a specific frequency 525



Surface Plasmon Resonance

Surface Plasmons - collective, quantized oscillations of conduction band electrons in a metal
Have wave/particle duality like photons, electrons

v

not detected M M v

v

v v ‘
o Proportional to
©
detected qvg QQ qQ 9 gg qQ QQ Your bound protein 8 || binding mass bound
0a
™, 7N L Dextran layer o
\/ \/ \/ \/ Thin metal (Au) layer
\ 4
Time

Y, = (Y, - YO)(I - e-k?mf)+ Y,

klon = kon [L]

N\
7

9|3ue dip

Electrons in the Au layer show a resonant
absorption at a specific frequency 526



Surface Plasmon Resonance

Surface Plasmons - collective, quantized oscillations of conduction band electrons in a metal
Have wave/particle duality like photons, electrons

not detected

detected QQ QQ QQ Q gg QQ QQ Your bound protein binding
— AN £ Dextran layer
\/ \/ \/ \/ Thin metal (Au) layer

Time

Y, = (Y, - YO)(I - e-k?mf)+ Y,

dissociation

9|3ue dip

\
4

klon = kon [L]

9|3ue dip

Y, =Y, e +Y,

Electrons in the Au layer show a resonant
absorption at a specific frequency 527



Surface Plasmon Resonance

Y, = (Y, - YO)(I - e'k'onf) +Y,

k,, =k,,[L] k
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diss
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Surface Plasmon Resonance

Surface Plasmons - collective, quantized oscillations of conduction band electrons in a metal
Have wave/particle duality like photons, electrons

detected QQ\ CPAQQ 99 gg QP/QQ
\VAAVEAVE VA




Surface Plasmon Resonance

Surface Plasmons - collective, quantized oscillations of conduction band electrons in a metal
Have wave/particle duality like photons, electrons

v Time

(v, -7, )[1-¢"")+Y,
detected QQ\ CP,\QQ Q gg CP/QQ | ( )
VAV AV AV Ky = ko[ L]

Y, =Y, e +Y,

Y,
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Surface Plasmon Resonance

Surface Plasmons - collective, quantized oscillations of conduction band electrons in a metal
Have wave/particle duality like photons, electrons

>
v =
v v v 'g bindi
v . v v 0% inding
M v v v x uM
v
v v v
Time
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\/ \/ t e’ 0 0
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Surface Plasmon Resonance

Surface Plasmons - collective, quantized oscillations of conduction band electrons in a metal
Have wave/particle duality like photons, electrons

The Mass Transport Kinetics problem

If diffusion of ligand is much faster than binding,
then this is not a problem, but....
>
v e
v v v o .
v . v v % binding
v v v v x iM
v v v v =
% = Time
’ - | x-5uM
v EJ R 1@=(Yw—Y0)(1—e‘konf)+Yo

\—64
_6

detected qu\ Cvp/\qo Q gg
VAV

klon = kon [L]

C

Y, =Y, e +Y,
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Surface Plasmon Resonance

Advantages:

measures Kq4, kon and kos (in principle)

detected QQ\ QQAQQ 9 gg QP/QQ

\VAAVEAVE VA

=
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o%; binding L
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4
Time
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Surface Plasmon Resonance
Advantages:

measures Kq4, kon and kos (in principle)

fluidics allows high throughput (in principle)

label free / works in complex environments
Disadvantages:

surface immobilization

mass transport issues
v v v v
M v v v x uM
v v v v
v v v v v

detected Qp\ QPAQP ? gg QP/QP
\VAAVEAVE VA

=
-U . .
o‘%; binding L
(]
A 4
Time
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Surface Plasmon Resonance

https://www.cytivalifesciences.com/en/us/solutions/protein-research/
knowledge-center/surface-plasmon-resonance/surface-plasmon-resonance

Time

534


https://www.cytivalifesciences.com/en/us/solutions/protein-research/knowledge-center/surface-plasmon-resonance/surface-plasmon-resonance

Competing Technologies

Surface Plasmon Resonance
Cytiva

Carte rra  “Proprietary HT-SPR™ technology” targeting monoclonal antibody screening...

A high-resolution CCD camera images the entire chip surface simultaneously, enabling up to 384
real-time interactions to be monitored in parallel with local referencing via neighboring interspots.

Complete kinetic data processing and analysis can be automated, with referencing, zeroing, cropping,
blank subtraction, and kinetic model fitting all executed as a single operation for up to | 152 samples
per unattended run.

Bio-Layer Interferometry

Sartorius / BioForte

hv
Measures change in refractive index at the surface

535



Thermophoresis

but first...

Recap / Revisit

April 13,2021



Surface Plasmon Resonance - recap

Surface Plasmons - collective, quantized oscillations of conduction band electrons in a metal

Have wave/particle duality like photons, electrons

detected QQ\ CPACP gQ gg QP/CP

\VAAVEAVE VA

3|3ue dip

binding

Time

Y, =(Y, - YO)(I - e-kimf)+ Y,

klon = kon[L]
Y =Y, e "' 4 Y,
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Surface Plasmon Resonance - recap

Surface Plasmons - collective, quantized oscillations of conduction band electrons in a metal
Have wave/particle duality like photons, electrons

The Mass Transport Kinetics problem

If diffusion of ligand is much faster than binding,
then this is not a problem, but....
>
v e
v v v o .
v . v v % binding
v v v v x iM
v v v v =
% = Time
’ - | x-5uM
v EJ R 1@=(Yw—Y0)(1—e‘konf)+Yo

\—64
_6

detected qu\ Cvp/\qo Q gg
VAV

klon = kon [L]

C

Y, =Y, e +Y,
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Competing Technologies

Bio-Layer Interferometry

Sartorius / BioForte

Not a flow system, so not subject to mass transfer issues

538



Competing Technologies

Bio-Layer Interferometry

reference layer sample layer

Sartorius / BioForte . .
reflection reflection

White light incident/reflected, but some
wavelengths shifted on reflection. Shift is
proportional to thickness of perturbing layer

The well plate was on a rapid shaker, why?

Not a flow system, so not subject to mass transfer issues

538



Competing Technologies

Bio-Layer Interferometry

reference layer sample layer

Sartorius / BioForte . .
reflection reflection

White light incident/reflected, but some
wavelengths shifted on reflection. Shift is
proportional to thickness of perturbing layer

https://www.youtube.com/watch?v=JvOCVIgaZ9s

And of course, this is
immobilization on a
surface, which should
The well plate was on a rapid shaker, why? always raise concerns

Not a flow system, so pet subject to mass transfer issues

How would the fluidics SPR experimenter do the same!? o8


https://www.youtube.com/watch?v=Jv0CVIgaZ9s

Thermophoresis

April 13,2021



Aerosol Thermophoresis

... hot for biology ...

N> N>
N> all are in motion,
described by kinetic
N> theory of gases
N2

N>



Aerosol Thermophoresis

... hot for biology ...

N> N2
N>

heating
element




Aerosol Thermophoresis

... hot for biology ...

Net transport away

4
N> N2 Cool - less kinetic energy
: N2 diffuse more slowly
i N
N> Hotter - more kinetic energy

diffuse faster
heating

element




Aerosol Thermophoresis
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Diffusion in all directions
away from the heat source

- less kinetic energy
diffuse more slowly
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» Net transport away
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Aerosol Thermophoresis

The phenomenon is observed at the scale of one millimeter or less. An example that may be observed by the naked eye with
good lighting is when the hot rod of an electric heater is surrounded by tobacco smoke: the smoke goes away from the
immediate vicinity of the hot rod. As the small particles of air nearest the hot rod are heated, they create a fast flow away from
the rod, down the temperature gradient. They have acquired higher kinetic energy with their higher temperature. When they
collide with the large, slower-moving particles of the tobacco smoke they push the latter away from the rod. The force that has
pushed the smoke particles away from the rod is an example of a thermophoretic force.

N>
N>

heating

» Net transport away
element

N>




Microscale Thermophoresis

Net transport
away

...’
H,O H,O H.0 H,O

HYO colisions o HO  FRO

.............................................. > Net tr‘anSpOI"t awa),

H,O H,O H,O
H,0 H,O H,O

heating
element



Microscale Thermophoresis

Net transport

heating
element

temperature gradient



Microscale Thermophoresis

Fluorescence Excitation

e.g.,420 nm

Fluorescence Emission
e.g., 503 nm[

Laser heating
1480 nm AT = 2-6 °C
(local)

Net transport
away

, temperature gradient
glass capillary



Microscale Thermophoresis

l Fluorophore
} T-dependence

Fluorescence

Time (s)

glass capillary



Microscale Thermophoresis

l Fluorophore
} T-dependence

Fluorescence

Thermophoresis

Time (s)

glass capillary



Microscale Thermophoresis

l Fluorophore
} T-dependence

Fluorescence

Thermophoresis

Time (s) Laser

Off

glass capillary



Microscale Thermophoresis

>

Fluorescence Emission Fluorescence Excitation
e.g., 503 nm e.g.,420 nm

®
®

Ligand binding at
. equilibrium

glass capillary . Kd, Ptot, Ltot

®



Microscale Thermophoresis

Fluorescence Excitation

e.g.,420 nm

Fluorescence Emission
e.g., 503 nm

Pulsed Laser heating
1480 nm

temperature gra!ient

glass capillary

’..’.




Microscale Thermophoresis

>

Fluorescence Emission Fluorescence Excitation
e.g., 503 nm e.g.,420 nm

\4

temperature gra!ient

222244 4 4

[I—tot] 3



Microscale Thermophoresis

Fluorescence Excitation

e.g.,420 nm

Fluorescence Emission
e.g., 503 nm

Pulsed Laser heating
1480 nm

temperature gra!ient

e

@

[I—tot] 3




Microscale Thermophoresis

[Liols (oot

[Leoc)2

A
AF(Ltor)
v
= [PL] A Kd, Ptot, I—tot
[P
F h unbound bound
Fnorm — = (1_ f)Fnomq +(f)Fnorm
[Leot]t F cold



Microscale Thermophoresis

Net transport

HZO H2O o HZO Net transport H2O

H,O

H,O HO
H.O
H,O >
H,O
H,O H,O
complicated

Steady state position (and AF) depends on “sjze”

Under constant buffer conditions, thermophoresis probes
the size, charge, and solvation entropy of the molecules.

Ligand does not necessarily have to be large relative to the macromolecule

Binding may close an open cleft

Binding may change solvation shell



Microscale Thermophoresis
Fluorescence

F (measure Kd’s at
Stl‘engths the low pM level)

- fluorescence can be highly sensitive
' (laser excitation!)

can be in a complex mixture

even cell lysate!



Microscale Thermophoresis
Fluorescence

F (measure Kd’s at
Stl‘engths the low pM level)
I - fluorescence can be highly sensitive

(laser excitation!)

can be in a complex mixture

even cell lysate!

uses very small volumes

'5’0| i <] nL(!) (but realistically more, since we can’t mix at that level!)
um



Microscale Thermophoresis
Label-free Fluorescence

F
./ Use intrinsic protein fluorescence

'/F 2-3 Trp residues - detect down to 100 nM

fluorophore details don't matter
Trp, Tyr, Phe...



Microscale Thermophoresis

Fluorescence
'F Strengths .
0\
ligand need not be large Shape““"d(a
'/F may induce change in the protein

that change can be in either direction

“negative” thermophoresis ol
67(3«\?
Caveats

The effects of two (or more) binding sites is not additive

extreme example: one positive, one negative thermophoresis



Microscale Thermophoresis

Titration at high concentrations

SSB: a homotetramer
- cooperatively binds dT7o oligo



Microscale Thermophoresis
Titration at high concentrations

O Stoichiometry I:1 O Stoichiometry 2:1

! 4

O O O
SSB: 2 homotetramer at 17.5 nM SSB, each SSB has two 35mers bound
- COOPerGtiVCIy binds dT7o oligo adding more SSB, some 35mers bind instead to

new/extra SSB

at 30 nM SSB, 35mers are distributed |:|



Microscale Thermophoresis

But wait...

What if the fluorophore shows
environment-dependent
temperature dependence!

Will reflect the population-
I same I Lg:r weighted average

T

Fluorophore

different I _” Tdependence  (T1UMP)

Fluorescence

Then we can use this as a
separate measure of binding!

Time (s)



Microscale Thermophoresis

Two separate measures of binding!

SSB: a homotetramer
- cooperatively binds dT7o oligo

Laser
On

+ Fluorophore

J T-dependence

Thermophoresis /

A

(T-jump)

Fluorescence

Time (s) I
Laser
Off



Microscale Thermophoresis

Two separate measures of binding!

SSB: a homotetramer
- cooperatively binds dT7o oligo

Binding of fluorphore-DNA to the
protein changes the environment
of the fluorophore, imparting a
different temperature dependence

Can use this to separately assess
binding

Laser

Fluorophore
T-dependence

(T-jump)

Fluorescence

Thermophoresis

Time (s) I
Laser
Off



Microscale Thermophoresis

Kinetics -
Yes, but... On

‘ caﬁ'\o“s" *

Fluorophore
]'Fdependence

What else contributes
to kinetics?

Fluorescence

Thermophoresis

Time (s)

Laser

Off



Multi-Angle Light Scattering - recap

When laser light impinges on a macromolecule, the oscillating electric field of the light
induces an oscillating dipole within it. This oscillating dipole will re-radiate light, much

like the antenna for a radio station sends out radio waves. The intensity of the radiated
light depends on the magnitude of the dipole induced in the macromolecule. The more

polarizable the macromolecule, the larger the induced dipole, and hence, the greater
the intensity of the scattered light.

“Molecule” = your favorite molecule

“Molecule” = plus all of the solvent molecules (including water)

Therefore, must know your molecule’s polarizability
relative to the surrounding medium.

on n = refractive index of entire solution

a[C] [C] = concentration of your protein

https://www.wyatt.com/library/theory/understanding-multi-angle-static-light-scattering.html


https://www.wyatt.com/library/theory/understanding-multi-angle-static-light-scattering.html

Multi-Angle Light Scattering - recap

Reference Detector
Detector

Y
'

| r -
| 2\ 8
laser // D \

sample

molar mass (molecular weight) of solute (g/mol)

correction factor that considers the SHAPE of the solute

A2 (second virial coefficient) is a measure of non-ideality - a measure of the
interaction forces between dissolved particles: If A; is positive, the

interparticle forces are repulsive. If it is negative the forces are attractive.
refractive index of the solvent in the absence of solute

change in refractive index of the solvent vs weight concentration of solute
= 0.185 mL/g for proteins (in water)

C = weight concentration of solute (g/mL) A\ = wavelength of laser light ~ Na = 6.022 - 102 mol!



Multi-Angle Light Scattering - recap
“MALS”

When there are many macromolecules in
solution, each macromolecule scatters light via Ihe intelnsit{ of light sczttbered
the aforementioned induced dipole mechanism. y @ molecl’e, measured by
Hence, the intensity of the scattered light is means of a DAWN HELEOS i

. . multi-angle light scattering
proportional to the concentration of the (MALS) detector, is directly
macromolecules in solution; twice as many proportional to the molar mass.
molecules scatter twice as much light.

https://www.wyatt.com/library/theory/understanding-multi-angle-static-light-scattering.html


https://www.wyatt.com/library/theory/understanding-multi-angle-static-light-scattering.html
https://www.wyatt.com/products/instruments/dawn-heleos-ii-multi-angle-light-scattering-detector.html

Multi-Angle Light Scattering - recap
MALS - Multi-Angle Light Scattering

Macromolecules much smaller than the wavelength of the incident light can be treated as
though they were essentially point scatterers. For such very small molecules, the light
scattered into the perpendicular plane is independent of scattering angle. It is the same at
every scattering angle — the macromolecule scatters light isotropically.

.-~ "isotropic scaﬁéﬁﬁd"‘~\‘
| ’ ‘-- e\/
e R 5]

polarization 777

laser

https://www.wyatt.com/library/theory/understanding-multi-angle-static-light-scattering.html


https://www.wyatt.com/library/theory/understanding-multi-angle-static-light-scattering.html

Multi-Angle Light Scattering - recap

Reference Detector
Detector

Y
'

| r -
| 2\ 8
laser // D \

sample

EM of the incident light induces an oscillation in the electron cloud, with the same frequency as the incident light

The oscillating electron cloud (dipole) then generates EM (of the same frequency)



MALS
MALS - Multi-Angle Light Scattering

Refractive index

Light scattered from different parts of the
macromolecule reach the detector with
different phases, leading to the destructive or
constructive interference.

The net light intensity is reduced relative to
light scattered in the forward direction, varying
with angle.

\

Angularly dependent
phase shift

The angular dependence of the scattered light
reflects the (geometrical) size of the molecule

- root mean square (rms) radius, aka "radius of gyration," rg or Rg

- a measure of the molecule's size weighted by the mass
distribution about its center of mass.

Assuming a specific conformation (e.g., random coil, sphere, or rod), the rms
radius can be related to its geometrical dimensions.

https://www.wyatt.com/library/theory/understanding-multi-angle-static-light-scattering.html


https://www.wyatt.com/library/theory/understanding-multi-angle-static-light-scattering.html

MALS
MALS - Multi-Angle Light Scattering

Refractive index

Light scattered from different parts of the
macromolecule reach the detector with
different phases, leading to the destructive or \
con.

The  But assumesa
light ying

with  uniform solution
e (ONne protein type) iight

refl sule
- root mean square (rms) radius, aka "radius of gyration," rg or Rg

- a measure of the molecule's size weighted by the mass
distribution about its center of mass.

Angularly dependent
phase shift

Assuming a specific conformation (e.g., random coil, sphere, or rod), the rms
radius can be related to its geometrical dimensions.

https://www.wyatt.com/library/theory/understanding-multi-angle-static-light-scattering.html
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SEC

SEC - Size Exclusion Chromatography

HPLC +
2.0 E+05
Hemoglobin ///\
. (52-62kD) [\
S 16E+05 (—
£ Viren:
5
i BSA dimer
% 1.2E+05 — \(133kD)
% I BSA monomer
<_g /(66kD)
= B8O0E+04 — /
X
40E+04 e 1 e '
32.0 360 _ 40.0 44.0
Time (min)
Larger Proteins Smaller Proteins
«— —
) ™ . .
+ - X\X Size standards
S X
Concerns . X
choose proper column (G25, G50...) I= X
ensure protein does not “stick” | X
Elution time

assumes globular (or...) protein



SEC-MALS
. SEC - Size Exclusion Chromatography

[\ ™~
i

2.0 E+05
- Hemoglobin /

. - (52-62kD)
S 16E+05 —
\E._ i :'.:l\.e" g
9 - . 0.3\:'
@ i BSA dimer
s T1.2E+05 — (133kD)
% i BSA monomer
<_g i /(66kD)
= 80E+04 — /

4.0 E+04 : : : : '7

v 32. _ _ 40.0 44.0
Time (min)

MALS - Multi-Angle Light Scattering

A sample containing a broad distribution of molecular masses may be separated by SEC or GPC,
and light scattering data acquired at each elution volume to determine molar mass Mw and rg. The
measured rms radius may be plotted against the correspondingly measured molar mass to
determine the sample's conformation.



SEC-MALS at UMass

SEC - Size Exclusion Chromatography

HPLC
-l ...bring your own column
2«3 Size standards &7
= X
© X
e X,
= X\.
' Elution time
MALS - Multi-Angle Light Scattering
Wyatt Dawn Heleos |l
Determine molar masses from 200 Da to | GDa and radii from 10-500 nm
l Temperature control -15°C to 150°C

dRI| - Differential Refractive Index Detector
Wyatt Optilab T-rEX

Measures protein concentration by refractive index

Measures solvent absolute refractive index (required for MALS analysis)
Temperature control 4°C to 65°C



Malvern Zetasizer ZSP - dynamic light scattering (DLYS)

e Dynamic Light Scattering is used to measure particle
and molecule size. DLS measures the diffusion of
particles moving under Brownian motion, and converts
this to size and a size distribution using the Stokes-
Einstein relationship.

e Measurement of size as a function of concentration
enables the calculation of kD, the DLS interaction
parameter.

e Laser Doppler Micro-electrophoresis is used to measure
zeta potential. An electric field is applied to a solution of
molecules or a dispersion of particles, which then move

with a velocity related to their zeta potential. This e Static Light Scattering is used to determine
velocity is measured using a patented laser the molecular weight of proteins and
interferometric technique called M3-PALS (Phase polymers. The scattering intensity of a
analysis Light Scattering). This enables the calculation number of concentrations of the sample is
of electrophoretic mobility and from this the zeta measured, and used to construct a Debye
potential and zeta potential distribution.This technique is plot. From this the weight average

very demanding on the sensitivity and stability of the molecular weight and second virial

whole system, and requires that every element of the coefficient can be calculated, which

design is optimized to ensure accuracy and provides a measure of protein solubility.

repeatability.



Statie Dynamic Light Scattering

Malvern Zetasizer ZSP - dynamic light scattering (DLS) system

Dynamic Light Scattering is used to measure particle and molecule size. DLS measures the
diffusion of particles moving under Brownian motion, and converts this to size and a size
distribution using the Stokes-Einstein relationship.

Measurement of size as a function of concentration enables the calculation of kD, the DLS
interaction parameter.

The Microrheology option uses the DLS measurement of tracer particles to probe the structure
of dilute polymer and protein solutions.

Laser Doppler Micro-electrophoresis is used to measure zeta potential. An electric field is
applied to a solution of molecules or a dispersion of particles, which then move with a velocity
related to their zeta potential. This velocity is measured using a patented laser interferometric
technique called M3-PALS (Phase analysis Light Scattering). This enables the calculation of
electrophoretic mobility and from this the zeta potential and zeta potential distribution.

Static Light Scattering is used to determine the molecular weight of proteins and polymers.The
scattering intensity of a number of concentrations of the sample is measured, and used to
construct a Debye plot. From this the weight average molecular weight and second virial
coefficient can be calculated, which provides a measure of protein solubility.




Statie Dynamic Light Scattering
Malvern Zetasizer ZSP - dynamic light scattering (DLS) system
Dynamic Light Scattering measures the diffusion of particles moving

under Brownian motion, and converts this to size and a size distribution
using the Stokes-Einstein relationship.

As light scatters from the moving macromolecules, this motion imparts
a randomness to the phase of the scattered light, such that when the
scattered light from two or more particles is added together, there will
be a changing destructive or constructive interference. This leads to
time-dependent fluctuations in the intensity of the scattered light.

Time-dependent fluctuations in the scattered light are measured by a fast photon
counter. The fluctuations are directly related to the rate of diffusion of the molecule
through the solvent, which is related in turn to the particles' hydrodynamic radii

Stokes-Einstein

kT
n =
radius Pl 6 71; nD

hydrodynamic

solvent diffusion
viscosity constant



Statie Dynamic Light Scattering

Malvern Zetasizer ZSP - dynamic light scattering (DLS) system

Hydrodynamic radius

/ N

bigger than the assumes everything
actual molecule is a sphere

hydration /

layer

Stokes-Einstein

kT
n =
radius Pl 6 72;77D

hydrodynamic

solvent diffusion
viscosity constant




Statie Dynamic Light Scattering

Malvern Zetasizer ZSP - dynamic light scattering (DLS) system

Assumes
* Brownian motion
* non-interacting billiard balls
* Spherical scatterers
* Proper calibration for viscosity, etc
* Properly dilute solution
* No interference from other scatterers

Stokes-Einstein

kT
alh =
radius A 6 T nD
; X
hydrodynamic solvent diffusion

viscosity constant



Electrophoretic Light Scattering

Malvern Zetasizer ZSP - dynamic light scattering (DLS) system

aka Laser-Doppler Electrophoresis

actually, this approach uses an alternating pulsed field

-

Reference Detector
Detector
; ,

roLe

laser

[ ﬁ\e
I J

sample



Electrophoretic Light Scattering

Malvern Zetasizer ZSP - dynamic light scattering (DLS) system

aka Laser-Doppler Electrophoresis

actually, this approach uses an alternating pulsed field

-

Reference Detector
Detector
; ,

roLe

laser

[ ﬁ\e
I J

sample



Zeta potential

6 Lys, 5 Arg, 2 His, 6 Glu, 7 Asp

OK, now what’s the net charge of this protein?

But 1 Glu is internal and protonated

2 Asp are internally salt bridged with
2 Lys

1 His is protonated, on the surface

There’s a bound sulfate, forming a
salt bridge with a Arg

Everything else is on the surface



Highly dependent on Zeta POtentlaI
o pH
+ ions in solution (concentration and identities)
+ bound ligands
« conformational changes
* just about everything...

OK, now what’s the net charge of the hydrated protein?

6 Lys, 5 Arg, 2 His, 6 Glu, 7 Asp

But 1 Glu is internal and protonated

2 Asp are internally salt bridged with
2 Lys

1 His is protonated, on the surface

There’s a bound sulfate, forming a
salt bridge with a Arg

Everything else is on the surface

But ions in solution are tightly bound
to some of the surface anions/
cations.

Some more than others...



Zeta potential

Surface charge density at the slipping
(or shear) plane.

The magnitude of the zeta potential
indicates the degree of electrostatic
repulsion between adjacent, similarly
charged particles in a dispersion.

For molecules and particles that are
small enough, a high zeta potential will
confer stability, i.e., the solution or
dispersion will resist aggregation.

When the potential is small, attractive
forces may exceed this repulsion and
the dispersion may break and
flocculate.



Zeta potential

Isoelectric Point

(Isoelectric focusing)

—




Zeta potential

Isoelectric Point

(Isoelectric focusing)

—




Zeta potential

Isoelectric Point

(Isoelectric focusing)

H The pH at which the protein has a zeta potential of zero
P

%

|




Odyssey LI-COR

Next generation imaging

¢ stable near-infrared fluorescent
signals and over 6 logs of linear
dynamic range

e capture images with exactly the
same settings every time with the
AutoScan feature, for the most
consistent and reproducible results.

e analyze up to nine miniblots or six
microplates in a single scan with a
large imaging area.

near-IR fluorescence

® near-IR stains, labels, etc (700-800 nm)



BioTek Plate Reader

fluorescence plate reader

¢ fluorescence detection w deep blocking filters and
dichroic mirrors for the best level of performance

¢ dedicated absorbance detection system is
monochromator-based

¢ dedicated optical elements for each individual
detection technique

e detection modes include
Fluorescence Intensity
Fluorescence Polarization
Time-Resolved Fluorescence
AlphaScreen

Luminescence

UV-visible Absorbance

¢ three broad-spectrum light sources have been chosen
for optimal illumination and excitation in all
applications.



MicroCal Auto-iTC200

automated titration microcalorimeter

fully automated, low volume, highly
sensitive isothermal titration calorimeter

delivers direct, label-free in solution
measurement of all binding parameters in
a single experiment

applications include characterizing
molecular interactions of small molecules,
proteins, antibodies, nucleic acids, lipids
and other biomolecules

can also be used to measure enzyme
kKinetics.



Chem 728 Recap

Plane-polarized radiation

Eexcited
Eexcited
Eground @
Eground
Classical: electrons can QM: electrons can have only Cell phones
have any energy discrete (quantized) energies Microwave ovens

WFCR



Chem 728 Recap

Plane-polarized radiation

Eexcited
Eexcited
Eground @
Eground
Classical: electrons can QM: electrons can have only
have any energy discrete (quantized) energies

Energy must approximately match There must be a mechanism
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Plane-polarized radiation

real part
imaginary part

Yo jwol’
s | AN | A
| 4y |:
2p /\ WAVANS
\/

-------
.
. L

¥y W |
linear combination of IY\ : {\ :
the two . . :
Wavefunction Probability

Transition dipoles can be complicated

There must be a mechanism



Chem 728 Recap

Plane-polarized radiation

Transition dipoles can be complicated There must be a mechanism



Chem 728 Recap

Plane-polarized radiation

Transition dipoles can be complicated Transition dipoles can be complicated



Chem 728 Recap

Formaldeh)'de

h, C D l . : y Z
/’C — O g even even odd
H

:C — O odd even odd

H l Zy
///C @ even odd odd

Transition dipoles can be complicated But symmetry CAN lead to zero or low probabilities



NH Trp

OH

Tyr

Phe

oot

Chem 728 Recap

280 nm 5050 M-l cm-!
274 nm 1440 M-! cm-!
257 nm 220 M-I cm-!

. .
p >220 M- em-!

Transition dipoles can be complicated

Formaldeh)'de

H//’ IL» even

Z

@:@ »
@C OQX

y Z
even odd
even odd
odd odd

But symmetry CAN lead to zero or low probabilities



/NH Trp 280 nm
OH
Tyr 274 nm
Phe 257 nm
+

Transition dipoles can be complicated

Chem 728 Recap

5050 M-I cm-!
1440 M-I ¢cm-!
220 M- cm-!

>220 M-I cm-!

D _O

O "R T
Which orbitals are 2 L.
more “extended?” RS 0
S o)
: e
Hy, N '
C S —— ——
H

Which orbitals are
more “‘compact?”

But symmetry CAN lead to zero or low probabilities



Peptide

T TC* nTt*
~193 nm ~222 nm
n %
T[nb %
ch %
n' %

2 |
C—0 '
‘N‘/ U
U
v
£ U
()
C—0 ﬂnb
ve
e
C—0 Ty
!fu )
|
Ce=Omg N

Chem 728 Recap

bond

Whitmore & Wallace (2007)

Biopolymers 89, 392-400

D _O

- Q : :
o 0]
Which orbitals are g L.
more “extended?” RS 0
o O
H/,'C @ Tl 1 2 1
H
Which orbitals are
more “‘compact?”
=0 U —
HY D
TT to TT* n to TT*

But symmetry CAN lead to zero or low probabilities


http://www3.interscience.wiley.com/cgi-bin/fulltext/116323652/HTMLSTART

Plane-polarized radiation

Linear dichroism

polarized molecules resulting
light absorb light LD spectrum
0
-0.02}

i 3 004
¥

propagation 230 260 290 320

direction wavelength / nm

728 Recap

There must be a mechanism
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Plane-polarized radiation /

Circular dichroism

Linear dichroism Experiment Theory

polarized molecules resulting
light absorb light LD spectrum
0
-0.02}
- 3 -0.04
¥
propagation 230 260 290 320

direction wavelength / nm
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Circular dichroism

Experiment

Theory



Chem 728 Recap

Intersystem crossing

Nuclei move much more slowly than
electrons!
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Exponential decay
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oscillating transition /

dipole
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linear combination
of the two

Donor

Chem 728 Recap

Fluorescence Resonance Energy Transfer

A particular type of quenching

.
AO

Acceptor

real part
imaginary part

¥o ol
AN N
¥ 4y I: T
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Wavefunction

Interacting transition
dipoles

1s
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of the two

oscillating transition
dipole
—>

real part
imaginary part

/T\ AN

L
{
L

¥ [y 1€ |

~

. 43 . 12
In K x|

L g
oS

3 .
------

Wavefunction Probability

Distance dependent

Angular dependence

Energy match

Competes w/ other mechs
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Fluorescence Resonance Energy Transfer

A particular type of quenching

l Distance dependent
] A

: I
Donor A,

Acceptor Angular dependence

Fluorescence Quantum Yield

D 1I—— photons emitted Energy match

photons absorbed

D ® proportional to I/A
0
Competes w/ other mechs
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Fluorescence Resonance Energy Transfer

A particular type of quenching

i Distance dependent
- A
D, !
Donor E A,
Acceptor Angular dependence
Quenching of Donor Fluorescence
Fluorescence of acceptor Energy match

Can Measure
Competes w/ other mechs
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Fluorescence Resonance Energy Transfer

A particular type of quenching

Distance dependent

Rotation can average out angular Angular dependence

dependence, but BE CAREFUL!

Energy match

Competes w/ other mechs



Excitation

slit

perpendicular

Intensity

Chem 728 Recap

But excitation is MUCH
/’ brighter than emission!
Excitation o
bandpass Emission bandpass
“— — -«
Absorbance
Emission
[ [ [ [ [
500 550 600 650 700

wavelength (nm)

fluid

(AN

(|

Anisotropy / Polarization

emission

—> 1IP>O

A —>

1 excitation

>»<«— [, >0

emission

Full random reorientation, A=0



light

all fregs
all orientations

parallel

excitation
polarizing filter

Chem 728 Recap

|
—
Y

perpendicular

4

monochromatic, single orientation

monochromatic, all orientations

fluid

(AN

(|

Anisotropy / Polarization

—> 1IP>O

emission

A —>

1 excitation

>»<«— [, >0

emission

Full random reorientation, A=0
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Lasers and Imaging - A Whole New World!

!

— g —>

o1

................................................................ Compare Signa|s

single photon avalanche detector
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faster gle;gt\évrdifferent
. medium ive index
Lasers and Imaging - A Whole New World! ) / reffactive inde

Image a cell

slower
. Quartz
medium

Total Internal Reflectance

faster

medium / water
slower f // A /\ glass
medium N (quartz)
critical TIR
angle

H‘fvf Quartz

oscillating field
OO
water




Fluorescence at Surfaces

Bio-Layer Interferometry

Chem 728 Recap

faster glei,gtw different
. ol o o . medium Stive index
Surface Detection / Immobilization / Localization ) / e e

v

not detected

detected

AN

v v v
v

v v v v
v
Qp Qp Qp ? gg Qp Qp Your bound protein
\\//\\/ \/ \// Dextran layer

Thin metal (Au) layer

= =

SPR

Y 4

9|3ue dip

switchSENSE

slower
) Quartz
medium

Total Internal Reflectance

faster water
medium /
slower f //V e et glass
medium » (quartz)
critical TIR
angle

oscillating field

water
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Single Molecule Approaches

*NOT* Single photon!!

Laser (Bead) Trap

Traps both laterally and axially

Steve Block, et al.

laser light in laser light in
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Vacuum

faster -
) / water
medium

slower
medium Quartz —
slowed

longer
By Ulflund - https://commons.wikimedia.org/w/index.php?curid=73784342

slowed
less

SEC-MALS
SEC - Size Exclusion Chromatography
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MALS - Multi-Angle Light Scattering

More with refraction
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sample
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Diffusion of Molecules

Dynamic Light Scattering

Photon Correlation Spectroscopy

I(BT you see dark and
light spots, no

6_” n r pattern.

“blinking”

N = solution viscosity we C

Diffusion (Brownian Motion)

D =

r = hydrodynamic radius
“apparent size”

;#:i- -F-..‘nn :ﬁ‘PJZC)Qé;A;;;‘nu
: +". 2o H,0%
e : Q.0 i

N %, HOg o
®e o* *
L T A

.
-------
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Diffusion of Molecules

Diffusion (Brownian Motion) Electrophoretic Light Scattering

Malvern Zetasizer ZSP - dynamic light scattering (DLS) system

I(BT aka Laser-Doppler Electrophoresis
6TTNr

N = solution viscosity ~

D =

r = hydrodynamic radius
“apparent size”

l.... “‘IIII... “‘I"l.... """O". “‘lll....
. . L4 * * . . *
L 3 * L 3 .‘+ + A * '\‘6/ L N * L 3
. * . . * HzO‘z‘ 20 * o .
. » . & . . (@) . & .
L & . 3
: : : . o H,O" ’
: +: -V 2
n
n O n
. » T T g
. D . H,O «»
. + 0 + HO 2~
., + . - 2 .
S “’ ‘e ’p HZQ’
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More fun with fluorescence

Microscale Thermophoresis

Fluorescence Emission Fluorescence Excitation
e.g,503 nm | [e.g,420 nm

Laser heating
1480 nm AT =~ 2-6 °C

(local)

H,O
H,O H,O H,O
H2O  colisions 0
H ......................................................... >
O H20 H-,O
H20 H20 H20

. temperature gradient
glass capillary
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Measuring Heats

But remember that you can always assess van’t Hoff by
enthalpies from the T-dependence of K o

In either case, AH is for the entire system, not just your
intended system, so be careful not to over-interpret

very small heat loss

A\VAVAVAV,

ery small heat input
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Never Do Unnecessary Manipulations!

v/[L] New

0.4+

0.0

Chem 728 Recap

lgnore the old textbooks

i 4

Never Make Unnecessary Assumptions!
Equilibrium Math
A+ B—=—AB VY 7
S " [a8]
A:=AT_:AB: AT=:A:+:AB:
B|=B, -[AB B, =|B|+|AB
K,[aB]=[A] B]= (A, -[4B])(B; -[4B])

ASS >> X

xz—(AT+BT+Kd)x+ATBT =0

ax“ +bx+c=0

~ —bi\/b2 - 4ac

X =

2a
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lgnore the old textbooks

Learn to Love R! .
Never Make Unnecessary Assumptions!

T Equilibrium Math
0T 5 _b ++/b* - 4ac
: ax“+bx+c=0 X = K, Knowns
2a A+ B——AB o _lAlB]
= [as]
A=A, -[AB_ A, =[A]+[AB
B|= B, -|AB B, =[B]+[AB

ASS >> X

xz—(AT+BT+Kd)x+ATBT =0

2

5 _bi\/b —4aC o 5 10 15 20 :

ax" +bx+c=0 X = > —
a




Chem 728 Recap

lgnore the old textbooks

v
Learn to Love R! Always Plot and Analyze Your Residuals!

| 0]
©)
T 2 © | o
0.3} TT7 _ 0 —-b = \/b - 4ac e
\ ax“+bx+c=0 X = .
Q 7Y 2a < © ©
¥ Q ® S T ° o ©
O i
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lgnore the old textbooks

Learn to Love R! .
Always remember that reported errors rely on assumptions

Formula: edatl$dat ~ eDecay(edatl$t, ampl, tau)

2
_ -b = \/b - 4ac Parameters:

i 2
ax " +bx+c=0 X =
5 2a Estimate/Std. Error t\value Pr(>|t])

11.52 <2e-16 skxkxk
27.16 <2e-16 skxkxk

amp 1 9.5239
tau 6.2702

!
12

Is the model the correct one!?

Are errors “normally distributed™?

° . ° ’
R can simulate kinetics! Always do a “gut check” on your results



	Syllabus
	Intro to Ch728
	Quantum Nature of Matter
	Electronic Spectra
	Circular Dichroism
	Fluorescence I
	FRET
	Molecular Beacons
	Fluorescence Anisotropy
	Fluorescence Microscopy
	Refraction of Light
	Total Internal Reflectance
	Single Molecule Approaches
	Laser Tweezers
	Atomic Force Spectroscopy
	Scattering
	Dynamic Light Scattering
	Intro to R
	Fitting Data to a Function
	Residuals!
	Fit Parameters
	Correlation of Parameters
	Comparing Fits
	Significant Figures
	Sources of Error
	Binding Measurements
	Equilibrium Math
	Anisotropy Direct Fit
	Levenberg-Marqardt
	Multi-Site Binding
	Kinetics
	Complex Kinetics
	R Kinetics Simulations
	Binding Cooperativity
	ITC - Isothermal Titration Calorimetry
	NanoDrop Practicals
	Fitting Spectra
	SPR - Surface Plasmon Resonance
	Bio-Layer Interferometry
	Thermophoresis
	SEC-MALS
	DLS - Zetasizer
	Misc IALS Instruments
	Ch728 ReCap


				t		dat

		1		0		10.1385967718684

		2		1		8.35533475533268

		3		2		6.76788471742473

		4		3		5.36280912133003

		5		4		4.48247204833858

		6		5		4.18185893519706

		7		6		3.34896480340668

		8		7		2.71315594667858

		9		8		2.62614956633054

		10		9		2.06087018509515

		11		10		1.86074194679208

		12		11		1.97873314323764

		13		12		1.83378700440039

		14		13		1.51439267158402

		15		14		1.30714846254938

		16		15		0.741412075403802

		17		16		0.631299882299171

		18		17		1.02965656564605

		19		18		0.902298811540632

		20		19		0.558746438644141

		21		20		0.400682660920331

		22		21		0.802962302399545

		23		22		0.515497522312792

		24		23		0.905477723273229

		25		24		0.344178788232269

		26		25		0.103340446000128

		27		26		0.879290356441754

		28		27		0.577592309885709

		29		28		0.493046226597491

		30		29		0.366163886781245

		31		30		0.125189162368687

		32		31		0.466644952642418

		33		32		-0.095514224245819

		34		33		0.177120019463404

		35		34		0.20511866185474

		36		35		0.312909299607934

		37		36		0.184261436760406

		38		37		0.151930611035154

		39		38		0.216249309890573

		40		39		-0.0782341680185992

		41		40		0.32520930978664




				t		dat

		1		0		9.89965561160406

		2		1		8.08097052145047

		3		2		6.67744943785694

		4		3		5.22277951891343

		5		4		4.82775890752331

		6		5		3.7570021172446

		7		6		3.46288885669533

		8		7		3.00508413479566

		9		8		2.67577686447275

		10		9		2.12202715407891

		11		10		1.88905804713446

		12		11		1.66971976295145

		13		12		1.56121088583001

		14		13		1.55314424355745

		15		14		1.33104446184922

		16		15		0.833529429151004

		17		16		1.10867207920963

		18		17		0.566091135496878

		19		18		0.728003744171317

		20		19		0.9182192235139

		21		20		0.562514859816494

		22		21		0.55291562231495

		23		22		0.270754599714266

		24		23		0.246961175293477

		25		24		0.633342036035018

		26		25		0.328033018234603

		27		26		0.320015682607643

		28		27		0.499296226849583

		29		28		0.471075363003345

		30		29		0.0665321685074309

		31		30		0.0152359425651835

		32		31		-0.104395814359253

		33		32		0.0784615027706075

		34		33		0.225982970787368

		35		34		0.1159918903248

		36		35		0.192617515397859

		37		36		0.352965179509885

		38		37		0.206671312227056

		39		38		0.274459430084553

		40		39		0.0315103621247322

		41		40		0.0367318622470727




				t		dat

		1		0		9.84873143540257

		2		1		8.33129187271357

		3		2		6.38212469201071

		4		3		5.46511175125526

		5		4		4.83974897719312

		6		5		3.70385706904348

		7		6		3.84355220419439

		8		7		3.18024920015537

		9		8		2.56216583784303

		10		9		2.38035587307187

		11		10		1.93117582752928

		12		11		1.98813368266502

		13		12		1.3134158688554

		14		13		1.25571261895737

		15		14		1.24017636046942

		16		15		1.05763474269569

		17		16		0.794182833241532

		18		17		0.72275773254928

		19		18		0.848249885087233

		20		19		0.505664308495434

		21		20		0.590748294126644

		22		21		0.701172601124367

		23		22		0.589740879697157

		24		23		0.532789462272734

		25		24		0.40590093071698

		26		25		0.259213586041813

		27		26		0.790621027871481

		28		27		0.0305026701828333

		29		28		0.310675980714301

		30		29		0.551057635033744

		31		30		0.64139273790269

		32		31		0.206056542657784

		33		32		0.50687416968744

		34		33		0.0792139644216593

		35		34		0.473030537628405

		36		35		0.214659370871557

		37		36		-0.100553582941985

		38		37		-0.114646660329077

		39		38		0.0825460901406397

		40		39		-0.062036844380371

		41		40		0.0370139860348798




				t		dat

		1		0		9.92484376710763

		2		1		7.7452527019393

		3		2		6.79635824648047

		4		3		5.34067444790844

		5		4		4.74223489610295

		6		5		3.85515695845257

		7		6		3.24052331549989

		8		7		2.86863013405886

		9		8		2.61184509266532

		10		9		2.36783061637859

		11		10		1.9266826259651

		12		11		1.75110080245479

		13		12		1.59099842874527

		14		13		1.53378345340063

		15		14		1.36072577012224

		16		15		0.952847204895546

		17		16		0.821704611893569

		18		17		1.11566967792908

		19		18		0.593906045950062

		20		19		1.11418475201834

		21		20		0.708364761054182

		22		21		0.72023918579785

		23		22		0.723853529706495

		24		23		0.543261685170936

		25		24		0.489932201451476

		26		25		0.106730121078648

		27		26		0.552338660825658

		28		27		0.359952511103858

		29		28		0.225839470305989

		30		29		0.0831649059854482

		31		30		0.234080907315526

		32		31		0.349644169081954

		33		32		0.0838724957276931

		34		33		0.298975414805918

		35		34		0.139444321136691

		36		35		0.214579143738712

		37		36		0.469889204318581

		38		37		0.114747185461748

		39		38		-0.115498216635279

		40		39		-0.185323583062656

		41		40		-0.0341942516597349




 # Simulating basic enzyme kinetics - no assumptions
#
#  Craig Martin    Chem 728   2021


# Wrap everything in a user function (not necessary, but easier to tweak below)

# the following sets defaults for some parameters (that then become optional)
EnzKin <- function(t0=0, tf, tincr=(tf-t0)/50, k1p, km1p, kcp, krp=0, E0, S0, ES0=0, P0=0) {

	# create a time range
	time <- seq(t0, tf, by = tincr)

	# parameters:
	parameters <- c(k1=k1p, km1=km1p, kc=kcp, kr=krp)

	# initial condition:
	state <- c(E=E0, S=S0, ES=ES0, P=P0)

	# R function to calculate the value of the derivatives at each time value
	# Use the names of the variables as defined in the vectors above
	# define in same order as specified above in state
	multiKin <- function(t, state, parameters){
	  with(as.list(c(state, parameters)), {
		dE <-  -k1*E*S + km1*ES + kc*ES - kr*E*P
		dS <-  -k1*E*S + km1*ES
		dES <- k1*E*S - km1*ES - kc*ES + kr*E*P    
		dP <-  kc*ES - kr*E*P
		
		# return derivatives in same relative order as specified above in state
		return(list(c(dE, dS, dES, dP)))
	  })
	}  ## end of function multiKin

	## Integration with 'ode' - ordinary differential equations
	out1 <- ode(y = state, times = time, func = multiKin, parms = parameters)

	# get results as a dataframe
	df <- as.data.frame(out1)
	
	Km <- (km1p+kcp)/k1p   # not used right now

	# return a list with things we might want to access directly in plotting, etc
	outl <- list("output"=out1, "t"=time, "E"=df$E, "S"=df$S, "ES"=df$ES, "P"=df$P )

	return(outl)
 }

# You can see from above, how you might output a "y-value" that could feed into nls

# call the above function (you can omit optional parameters)
 out <- EnzKin(tf=15,  tincr=0.01, k1p=0.1, km1p=0.1, kcp=0.2, E0=0.2, S0=20.0)


# plot the results (this will auto-scale to the product range; over-ride if desired)
plot( out$t, out$P, col="green", type="l", xlab="Time (s)", ylab="Concentration")
lines(out$t, out$E, col="purple")
lines(out$t, out$ES, col="red")
lines(out$t, out$S, col="blue")

legend(200, 3, c("P", "E", "ES", "S"), col = c("green", "purple", "red", "blue"), lty=c("solid","solid","solid","solid"))



# Simulating basic enzyme kinetics - no assumptions
#
#  Craig Martin    Chem 728   2021


# Wrap everything in a user function (not necessary, but easier to tweak below)

# the following sets defaults for some parameters (that then become optional)
EnzKin <- function(t0=0, tf, tincr=(tf-t0)/50, k1p, km1p, kcp, krp=0, kifp=0, kirp=0, E0, S0, ES0=0, P0=0, EI0=0, I0=0) {

	# create a time range
	time <- seq(t0, tf, by = tincr)

	# parameters:
	parameters <- c(k1=k1p, km1=km1p, kc=kcp, kr=krp, ki=kifp, kir=kirp)

	# initial condition:
	state <- c(E=E0, S=S0, ES=ES0, P=P0, I=I0, EI=EI0)

	# R function to calculate the value of the derivatives at each time value
	# Use the names of the variables as defined in the vectors above
	# define in same order as specified above in state
	multiKin <- function(t, state, parameters){
	  with(as.list(c(state, parameters)), {
		dE <-  -k1*E*S + km1*ES + kc*ES - kr*E*P - ki*E*I + kir*EI
		dS <-  -k1*E*S + km1*ES
		dES <- k1*E*S - km1*ES - kc*ES + kr*E*P    
		dP <-  kc*ES - kr*E*P
		
		dI <- -ki*E*I + kir*EI
		dEI <- ki*E*I - kir*EI
		
		# return derivatives in same relative order as specified above in state
		return(list(c(dE, dS, dES, dP, dI, dEI)))
	  })
	}  ## end of function multiKin

	## Integration with 'ode' - ordinary differential equations
	out1 <- ode(y = state, times = time, func = multiKin, parms = parameters)

	# get results as a dataframe
	df <- as.data.frame(out1)
	
	Km <- (km1p+kcp)/k1p   # not used right now
	Ki <- kirp/kifp

	# return a list with things we might want to access directly in plotting, etc
	outl <- list("output"=out1, "t"=time, "E"=df$E, "S"=df$S, "ES"=df$ES, "P"=df$P, "I"=df$I, "EI"=df$EI )

	return(outl)
 }

# You can see from above, how you might output a "y-value" that could feed into nls

# call the above function (you can omit optional parameters)
#out <- EnzKin(t0=0, tf=15, tincr=0.01, k1p=0.1, km1p=0.1, kcp=0.2, krp=0.001, E0=0.2, S0=2.0)

#out <- EnzKin(tf=150, tincr=0.01, k1p=0.1, km1p=0.1, kcp=0.2, E0=0.2, S0=2.0)
#out <- EnzKin(tf=40,  tincr=0.01, k1p=0.1, km1p=0.1, kcp=0.2, E0=0.2, S0=2.0)
#out <- EnzKin(tf=15,  tincr=0.01, k1p=0.1, km1p=0.1, kcp=0.2, E0=0.2, S0=2.0)
 out <- EnzKin(tf=15,  tincr=0.01, k1p=0.1, km1p=0.1, kcp=0.2, E0=0.2, S0=20.0, I=5, kifp=0.1, kirp=0.1)


# plot the results (this will auto-scale to the product range; over-ride if desired)
plot( out$t, out$P, col="green", type="l", xlab="Time (s)", ylab="Concentration")
lines(out$t, out$E, col="purple")
lines(out$t, out$ES, col="red")
lines(out$t, out$S, col="blue")
lines(out$t, out$EI, col="red",lty="dotted")
lines(out$t, out$I, col="blue",lty="dotted")

#legend(200, 3, c("P", "E", "ES", "S"), col = c("green", "purple", "red", "blue"), lty=c("solid","solid","solid","solid"))
#legend(200, 3, c("P", "E", "ES", "S"), col = c("green", "purple", "red", "blue"), lty=c("solid","solid","solid","solid"))
#legend(0, 0.3, c("P", "E", "ES", "S"), col = c("green", "purple", "red", "blue"), lty=c("solid","solid","solid","solid"))
#legend(10, 0.06, c("P", "E", "ES", "S"), col = c("green", "purple", "red", "blue"), lty=c("solid","solid","solid","solid"))
 legend(1, 0.45, c("P", "E", "ES", "S"), col = c("green", "purple", "red", "blue"), lty=c("solid","solid","solid","solid"))


				t		dat

		1		0		10.1385967718684

		2		1		8.35533475533268

		3		2		6.76788471742473

		4		3		5.36280912133003

		5		4		4.48247204833858

		6		5		4.18185893519706

		7		6		3.34896480340668

		8		7		2.71315594667858

		9		8		2.62614956633054

		10		9		2.06087018509515

		11		10		1.86074194679208

		12		11		1.97873314323764

		13		12		1.83378700440039

		14		13		1.51439267158402

		15		14		1.30714846254938

		16		15		0.741412075403802

		17		16		0.631299882299171

		18		17		1.02965656564605

		19		18		0.902298811540632

		20		19		0.558746438644141

		21		20		0.400682660920331

		22		21		0.802962302399545

		23		22		0.515497522312792

		24		23		0.905477723273229

		25		24		0.344178788232269

		26		25		0.103340446000128

		27		26		0.879290356441754

		28		27		0.577592309885709

		29		28		0.493046226597491

		30		29		0.366163886781245

		31		30		0.125189162368687

		32		31		0.466644952642418

		33		32		-0.095514224245819

		34		33		0.177120019463404

		35		34		0.20511866185474

		36		35		0.312909299607934

		37		36		0.184261436760406

		38		37		0.151930611035154

		39		38		0.216249309890573

		40		39		-0.0782341680185992

		41		40		0.32520930978664




# Simulating complex kinetics
#
#  Craig Martin    Chem 728   2021


# Wrap everything in a user function (a bit fancier than what was in class)
MultiStepModel1 <- function(trange, k1p, k2p, A0, B0, C0, D0, E0) {
    
    # parameters: a named vector
    parameters <- c(k1=k1p, k2=k2p)
    
    # initial condition: a named vector
    state <- c(A=A0,B=B0,C=C0,D=D0,E=E0)
    
    # R function to calculate the value of the derivatives at each time value
    # Use the names of the variables as defined in the vectors above
    multiKin <- function(t, state, parameters){
      with(as.list(c(state, parameters)), {
        dA <-  -k1*E*A
        dB <-  k1*E*A - k2*B*C
        dC <-  -k2*B*C
        dD <-  k2*B*C
        dE <-  k2*B*C - k1*E*A
        return(list(c(dA, dB, dC, dD, dE)))
      })
    }
    ## Integration with 'ode' - ordinary differential equations
    out1 <- ode(y = state, times = time, func = multiKin, parms = parameters)
    
    # to prep for plotting, create a dataframe as a part of the out1 object
    out1.df = as.data.frame(out)

    return(out1)
 }
 # You can see from above, how you might output a "y-value" that could feed into nls
 
 	# Set up the time range
 	time <- seq(0, 40, by = 0.01)

	## out <- MultiStepModel1(time, 0.08, 0.02, 5.0, 0.0, 50.0, 0.0, 0.5)
	
	out <- MultiStepModel1(trange = time, k1p=0.8, k2p=0.005, A0=5.0, B0=0.0, C0=100.0, D0=0.0, E0=0.5)
    
    plot(out.df$time, out.df$A, type="l", col="green", xlab="Time (s)", ylab="Concentration", ylim=c(0.0,5.0))
    lines(out.df$time, out.df$B, col="purple")
    lines(out.df$time, out.df$C, col="red")
    lines(out.df$time, out.df$D, col="blue")
    lines(out.df$time, out.df$E, col="brown")
    
    legend(30, 4, c("A", "B", "C", "D", "E"), col = c("green", "purple", "red", "blue", "brown"), lty=c("solid","solid","solid","solid","solid"))


sink("output.txt", append=FALSE, split=TRUE)

t <- 0:40

f1 <- 0.4
f2 <- 0.5

sdv <- 0.2

tau1 <- 2.5
tau2 <- 10.0
tau3 <- 5.0

eDecay <- function(t, ampl, tau) (ampl*exp(-t/tau))
eDecay2 <- function(t, ampl, f1, tau1, tau2) (ampl*((f1*exp(-t/tau1))+((1-f1)*exp(-t/tau2))))
eDecay3 <- function(t, ampl, f1, tau1, f2, tau2, tau3) (ampl*((f1*exp(-t/tau1))+(f2*exp(-t/tau2))-((1-f1-f2)*(exp(-t/tau3)))))

# This is how data could be generated - but we won't use this
#dat1 <- eDecay(t,f1,tau1) + rnorm(length(t),mean=0,sd=sdv)
#dat2 <- eDecay2(t,f1,tau1,f2,tau2) + rnorm(length(t),mean=0,sd=sdv)
#dat3 <- eDecay3(t,1.0,f1,tau1,f2,tau2,tau3) + rnorm(length(t),mean=0,sd=sdv)

# Instead read in data from a file - process each breakout group separately

print("======= Group 1 =======")

# Group 1
edat1 <- read.csv("DataGrp1.csv", header = TRUE)
plot(edat1$t,edat1$dat,xlab="Time (s)",ylab="Fluorescence",main="Group 1")

model1G1 <- nls(edat1$dat ~ eDecay(edat1$t,ampl,tau), data=edat1, start=list(ampl=11,  tau=5), trace=TRUE)
summary(model1G1)
lines(edat1$t,predict(model1G1))

pdf("MonoFitG1.pdf")
plot(edat1$t, edat1$dat,xlab="Time (s)",ylab="Fluorescence",main="Group 1")
lines(edat1$t,predict(model1G1))
dev.off()

pdf("MonoFitG1Resid.pdf")
plot(edat1$t,residuals(model1G1),xlab="Time (s)",ylab="Residuals   (Expt - Theory)",main="Group 1")
abline(h=c(0.0), lty=2)
dev.off()

model2G1 <- nls(edat1$dat ~ eDecay2(edat1$t,ampl,f1,tau1,tau2), data=edat1, start=list(ampl=10, f1=0.5, tau1=2.5, tau2=10), trace=TRUE)
summary(model2G1)
lines(edat1$t,predict(model1G1))

pdf("BiExpFitG1.pdf")
plot(edat1$t, edat1$dat,xlab="Time (s)",ylab="Fluorescence",main="Group 1 Biphasic")
lines(edat1$t,predict(model1G1))
lines(edat1$t,predict(model2G1),lty="dashed")
dev.off()

pdf("BiExpFitG1Resid.pdf")
plot(edat1$t,residuals(model2G1),xlab="Time (s)",ylab="Residuals   (Expt - Theory)",main="Group 1 Biphasic")
abline(h=c(0.0), lty=2)
dev.off()


print("======= Group 2 =======")

# Group 2
edat2 <- read.csv("DataGrp2.csv", header = TRUE)
plot(edat2$t,edat2$dat,xlab="Time (s)",ylab="Fluorescence",main="Group 2")

model1G2 <- nls(edat2$dat ~ eDecay(edat2$t,ampl,tau), data=edat2, start=list(ampl=10,  tau=5), trace=TRUE)
summary(model1G2)
lines(edat2$t,predict(model1G2))

pdf("MonoFitG2.pdf")
plot(edat2$t,edat2$dat,xlab="Time (s)",ylab="Fluorescence",main="Group 2")
lines(edat2$t,predict(model1G2))
dev.off()

pdf("MonoFitG2Resid.pdf")
plot(edat2$t,residuals(model1G2),xlab="Time (s)",ylab="Residuals   (Expt - Theory)",main="Group 2")
abline(h=c(0.0), lty=2)
dev.off()

model2G2 <- nls(edat2$dat ~ eDecay2(edat2$t,ampl,f1,tau1,tau2), data=edat2, start=list(ampl=10, f1=0.5, tau1=2.5, tau2=10), trace=TRUE)
summary(model2G2)
lines(edat2$t,predict(model2G2),lty="dashed")

pdf("BiExpFitG2.pdf")
plot(edat2$t, edat2$dat,xlab="Time (s)",ylab="Fluorescence",main="Group 2 Biphasic")
lines(edat2$t,predict(model1G2))
lines(edat2$t,predict(model2G2),lty="dashed")
dev.off()

pdf("BiExpFitG2Resid.pdf")
plot(edat2$t,residuals(model2G2),xlab="Time (s)",ylab="Residuals   (Expt - Theory)",main="Group 2 Biphasic")
abline(h=c(0.0), lty=2)
dev.off()


print("======= Group 3 =======")

# Group 3
edat3 <- read.csv("DataGrp3.csv", header = TRUE)
plot(edat3$t,edat3$dat,xlab="Time (s)",ylab="Fluorescence",main="Group 3")

model1G3 <- nls(edat3$dat ~ eDecay(edat3$t,ampl,tau), data=edat3, start=list(ampl=10,  tau=5), trace=TRUE)
summary(model1G3)
lines(edat3$t,predict(model1G3))

pdf("MonoFitG3.pdf")
plot(edat3$t,edat3$dat,xlab="Time (s)",ylab="Fluorescence",main="Group 3")
lines(edat3$t,predict(model1G3))
dev.off()

pdf("MonoFitG3Resid.pdf")
plot(edat3$t,residuals(model1G3),xlab="Time (s)",ylab="Residuals   (Expt - Theory)",main="Group 3")
abline(h=c(0.0), lty=2)
dev.off()

model2G3 <- nls(edat3$dat ~ eDecay2(edat3$t,ampl,f1,tau1,tau2), data=edat2, start=list(ampl=10, f1=0.5, tau1=2.5, tau2=10), trace=TRUE)
summary(model2G3)
lines(edat3$t,predict(model2G3),lty="dashed")

pdf("BiExpFitG3.pdf")
plot(edat3$t, edat3$dat,xlab="Time (s)",ylab="Fluorescence",main="Group 3 Biphasic")
lines(edat3$t,predict(model1G3))
lines(edat3$t,predict(model2G3),lty="dashed")
dev.off()

pdf("BiExpFitG3Resid.pdf")
plot(edat3$t,residuals(model2G3),xlab="Time (s)",ylab="Residuals   (Expt - Theory)",main="Group 3 Biphasic")
abline(h=c(0.0), lty=2)
dev.off()


print("======= Group 4 =======")

# Group 4
edat4 <- read.csv("DataGrp4.csv", header = TRUE)
plot(edat4$t,edat4$dat,xlab="Time (s)",ylab="Fluorescence",main="Group 4")

model1G4 <- nls(edat4$dat ~ eDecay(edat4$t,ampl,tau), data=edat4, start=list(ampl=10,  tau=5), trace=TRUE)
summary(model1G4)
lines(edat4$t,predict(model1G4))

pdf("MonoFitG4.pdf")
plot(edat4$t,edat4$dat,xlab="Time (s)",ylab="Fluorescence",main="Group 4")
lines(edat4$t,predict(model1G4))
dev.off()

pdf("MonoFitG4Resid.pdf")
plot(edat4$t,residuals(model1G4),xlab="Time (s)",ylab="Residuals   (Expt - Theory)",main="Group 4")
abline(h=c(0.0), lty=2)
dev.off()

model2G4 <- nls(edat4$dat ~ eDecay2(edat4$t,ampl,f1,tau1,tau2), data=edat4, start=list(ampl=10, f1=0.5, tau1=2.5, tau2=10), trace=TRUE)
summary(model2G4)
lines(edat4$t,predict(model2G4),lty="dashed")

pdf("BiExpFitG4.pdf")
plot(edat4$t, edat4$dat,xlab="Time (s)",ylab="Fluorescence",main="Group 4 Biphasic")
lines(edat4$t,predict(model1G4))
lines(edat4$t,predict(model2G4),lty="dashed")
dev.off()

pdf("BiExpFitG4Resid.pdf")
plot(edat4$t,residuals(model2G4),xlab="Time (s)",ylab="Residuals   (Expt - Theory)",main="Group 4 Biphasic")
abline(h=c(0.0), lty=2)
dev.off()


print("======= Groups 1-4 =======")

edat <- rbind(edat1,edat2,edat3,edat4)

t <- edat$t
dta <- edat$dat

edat$t
edat$dat

edt <- edat[order(edat$t), ]

plot(edt$t,edat$dat,xlab="Time (s)",ylab="Fluorescence",main="Groups 1-4")

print("Debug0")
model1 <- nls(edt$dat ~ eDecay(edt$t,ampl,tau), data=edt, start=list(ampl=10, tau=5), trace=TRUE)
print("Debug1")
summary(model1)
print("Debug2")
lines(edt$t,predict(model1))

pdf("MonoFit.pdf")
plot(edt$t,edt$dat,xlab="Time (s)",ylab="Fluorescence",main="Groups 1-4")
lines(edt$t,predict(model1))
dev.off()

pdf("MonoFitResid.pdf")
plot(edt$t,residuals(model1),xlab="Time (s)",ylab="Residuals   (Expt - Theory)",main="Groups 1-4")
abline(h=c(0.0), lty=2)
dev.off()

model2 <- nls(edt$dat ~ eDecay2(edt$t,ampl,f1,tau1,tau2), data=edt, start=list(ampl=10, f1=0.5, tau1=2.5, tau2=10), trace=TRUE)
summary(model2)
lines(edt$t,predict(model2),lty="dashed")

pdf("BiExpFit.pdf")
plot(edt$t, edt$dat,xlab="Time (s)",ylab="Fluorescence",main="Groups 1-4 Biphasic")
lines(edt$t,predict(model1))
lines(edt$t,predict(model2),lty="dashed")
dev.off()

pdf("BiExpFitResid.pdf")
plot(edt$t,residuals(model2),xlab="Time (s)",ylab="Residuals   (Expt - Theory)",main="Groups 1-4 Biphasic")
abline(h=c(0.0), lty=2)
dev.off()

print("Combined")

pdf("MonoFitAll.pdf")
plot(edat1$t,edat1$dat,col="green",xlab="Time (s)",ylab="Fluorescence",main="Groups 1-4")
points(edat2$t,edat2$dat,col="blue")
points(edat3$t,edat3$dat,col="red")
points(edat4$t,edat4$dat,col="orange")

lines(edat1$t,predict(model1G1),col="green")
lines(edat2$t,predict(model1G2),col="blue")
lines(edat3$t,predict(model1G3),col="red")
lines(edat4$t,predict(model1G4),col="orange")
dev.off()

pdf("MonoFitResid.pdf")
plot(edat1$t,residuals(model1G1),col="green",xlab="Time (s)",ylab="Residuals   (Expt - Theory)",main="Groups 1-4")
points(edat2$t,residuals(model1G2),col="blue")
points(edat3$t,residuals(model1G3),col="red")
points(edat4$t,residuals(model1G4),col="orange")
abline(h=c(0.0), lty=2)
dev.off()


pdf("BiExpFitAll.pdf")
plot(edat1$t,edat1$dat,col="green",xlab="Time (s)",ylab="Fluorescence",main="Groups 1-4 Biphasic")
points(edat2$t,edat2$dat,col="blue")
points(edat3$t,edat3$dat,col="red")
points(edat4$t,edat4$dat,col="orange")

lines(edat1$t,predict(model2G1),col="green")
lines(edat2$t,predict(model2G2),col="blue")
lines(edat3$t,predict(model2G3),col="red")
lines(edat4$t,predict(model2G4),col="orange")
dev.off()

pdf("BiExpFitResid.pdf")
plot(edat1$t,residuals(model2G1),col="green",xlab="Time (s)",ylab="Residuals   (Expt - Theory)",main="Groups 1-4 Biphasic")
points(edat2$t,residuals(model2G2),col="blue")
points(edat3$t,residuals(model2G3),col="red")
points(edat4$t,residuals(model2G4),col="orange")
abline(h=c(0.0), lty=2)
dev.off()

pdf("BothFitAll.pdf")
plot(edat1$t,edat1$dat,col="green",xlab="Time (s)",ylab="Fluorescence",main="Groups 1-4 Biphasic")
points(edat2$t,edat2$dat,col="blue")
points(edat3$t,edat3$dat,col="red")
points(edat4$t,edat4$dat,col="orange")

lines(edat1$t,predict(model1G1),col="green")
lines(edat2$t,predict(model1G2),col="blue")
lines(edat3$t,predict(model1G3),col="red")
lines(edat4$t,predict(model1G4),col="orange")

lines(edat1$t,predict(model2G1),col="green",lty="dashed")
lines(edat2$t,predict(model2G2),col="blue",lty="dashed")
lines(edat3$t,predict(model2G3),col="red",lty="dashed")
lines(edat4$t,predict(model2G4),col="orange",lty="dashed")
dev.off()

pdf("BiExpFitAllSimple.pdf")
plot(edat1$t,edat1$dat,xlab="Time (s)",ylab="Fluorescence",main="Groups 1-4 Biphasic")
points(edat2$t,edat2$dat)
points(edat3$t,edat3$dat)
points(edat4$t,edat4$dat)
lines(edt$t,predict(model2))
lines(edt$t,predict(model1),lty="dashed")
legend(15, 8, c("Mono Exponential", "Bi Exponential"), lty = c("dashed","dotted"), col = c("black", "black"))
dev.off()

pdf("BiExpFitAllSimplePluMinusTau2.pdf")
plot(edat1$t,edat1$dat,xlab="Time (s)",ylab="Fluorescence",main="Biphasic ±2xStdErr")
points(edat2$t,edat2$dat)
points(edat3$t,edat3$dat)
points(edat4$t,edat4$dat)
lines(edt$t,predict(model2))
lines(edt$t,eDecay2(edt$t,9.96,0.53,3.16,8.85),lty="dashed",lwd=2,col="red")
lines(edt$t,eDecay2(edt$t,9.96,0.53,3.16,11.58),lty="dashed",lwd=2,col="blue")
dev.off()

pdf("BiExpFitAllSimpleConfIntTau2.pdf")
plot(edat1$t,edat1$dat,xlab="Time (s)",ylab="Fluorescence",main="Biphasic Confidence Intervals")
points(edat2$t,edat2$dat)
points(edat3$t,edat3$dat)
points(edat4$t,edat4$dat)
lines(edt$t,predict(model2))
lines(edt$t,eDecay2(edt$t,9.96,0.53,3.16,9.03),lty="dashed",lwd=2,col="red")
lines(edt$t,eDecay2(edt$t,9.96,0.53,3.16,12.05),lty="dashed",lwd=2,col="blue")
dev.off()

pdf("BiExpFitAllSimplePluMinusTau1.pdf")
plot(edat1$t,edat1$dat,xlab="Time (s)",ylab="Fluorescence",main="Biphasic ±2xStdErr")
points(edat2$t,edat2$dat)
points(edat3$t,edat3$dat)
points(edat4$t,edat4$dat)
lines(edt$t,predict(model2))
lines(edt$t,eDecay2(edt$t,9.96,0.53,2.57,10.2),lty="dashed",lwd=2,col="red")
lines(edt$t,eDecay2(edt$t,9.96,0.53,3.76,10.2),lty="dashed",lwd=2,col="blue")
dev.off()

pdf("BiExpFitAllSimpleConfIntTau1.pdf")
plot(edat1$t,edat1$dat,xlab="Time (s)",ylab="Fluorescence",main="Biphasic Confidence Intervals")
points(edat2$t,edat2$dat)
points(edat3$t,edat3$dat)
points(edat4$t,edat4$dat)
lines(edt$t,predict(model2))
lines(edt$t,eDecay2(edt$t,9.96,0.53,2.55,10.2),lty="dashed",lwd=2,col="red")
lines(edt$t,eDecay2(edt$t,9.96,0.53,3.80,10.2),lty="dashed",lwd=2,col="blue")
dev.off()

pdf("BiExpFitAllSimplePluMinusFrac.pdf")
plot(edat1$t,edat1$dat,xlab="Time (s)",ylab="Fluorescence",main="Biphasic ±2xStdErr")
points(edat2$t,edat2$dat)
points(edat3$t,edat3$dat)
points(edat4$t,edat4$dat)
lines(edt$t,predict(model2))
lines(edt$t,eDecay2(edt$t,9.96,0.42,3.16,10.2),lty="dashed",lwd=2,col="red")
lines(edt$t,eDecay2(edt$t,9.96,0.66,3.16,10.2),lty="dashed",lwd=2,col="blue")
dev.off()

pdf("BiExpFitAllSimpleConfIntFrac.pdf")
plot(edat1$t,edat1$dat,xlab="Time (s)",ylab="Fluorescence",main="Biphasic Confidence Intervals")
points(edat2$t,edat2$dat)
points(edat3$t,edat3$dat)
points(edat4$t,edat4$dat)
lines(edt$t,predict(model2))
lines(edt$t,eDecay2(edt$t,9.96,0.42,3.16,10.2),lty="dashed",lwd=2,col="red")
lines(edt$t,eDecay2(edt$t,9.96,0.66,3.16,10.2),lty="dashed",lwd=2,col="blue")
dev.off()

# Advanced analyses

anv <- anova(model1, model2)
summary(anv)

# Compare ranges of parameters vs confidence percentage
pf=profile(model2)
plot(pf, conf = c( 99, 95, 90, 80, 50)/100,  absVal = TRUE, ylab = NULL, lty = 2)

# Initial attempt at plotting correlation ellipses - not what I'm after, but a start
# plotcorr(summary(model2,correlation=TRUE))

plot(ellipse(model2,level=c(0.95),which=c('tau1','tau2')), type = 'l')

# This works!!!
plot(ellipse(model2,level=c(0.99),which=c('tau1','tau2')), type = 'l')
lines(ellipse(model2,level=c(0.95),which=c('tau1','tau2')), type = 'l')
lines(ellipse(model2,level=c(0.90),which=c('tau1','tau2')), type = 'l')
lines(ellipse(model2,level=c(0.80),which=c('tau1','tau2')), type = 'l')
lines(ellipse(model2,level=c(0.50),which=c('tau1','tau2')), type = 'l')

#predictMtrx <- predict(model2G1,interval="confidence",level=0.9)
#plot(edat1$t,edat1$dat,col="green",xlab="Time (s)",ylab="Fluorescence",main="Groups 1-4 Biphasic")
#lines(edat1$t,predict(model2G1))
#lines(edat1$t,predictMtrx,col="red")

rAll1 = c(residuals(model1G1),residuals(model1G2),residuals(model1G3),residuals(model1G4))

rAll2 = c(residuals(model2G1),residuals(model2G2),residuals(model2G3),residuals(model2G4))

sink()


Scatchard

LigBnd <- function(Lg, Kd, Et) (((Kd+Et+Lg)-sqrt((Kd+Et+Lg)^2-4*Et*Lg))/2)

LigBndGen <- function(Lg, Kd, Et, Au, Ab) (Au + (Ab-Au)*(((Kd+Et+Lg)-sqrt((Kd+Et+Lg)^2-4*Et*Lg))/2)/Et )


LBound <- myExpDecay(t,5.0,8.0,10.0) + rnorm(21,mean=0,sd=0.2)

l <- 1:50
y <- LigBnd(l,2,10)  + rnorm(51,mean=0,sd=0.4)
Anis <- 0.13 + 0.25*y/10

plot(l,Anis,xlab="[ligand] (µM)", ylab="Anisotropy")

dfexport <- data.frame(l, y)
write.csv(dfexport,"LigBndKd2Et10.csv", row.names = FALSE)

l <- 2*c(1:15)
yBnd <- LigBnd(l,2,10)  + rnorm(length(l),mean=0,sd=0.2)
Anis <- 0.09 + 0.1*yBnd/10

plot(l,Anis,xlab="[ligand] (µM)", ylab="Anisotropy",xlim=c(0,32),ylim=c(0.08,0.2))

model <- nls(Anis ~ LigBndGen(l,myKd,10,myAu,myAb), start=list(myKd=4,myAu=0.15,myAb=0.35))

summary(model)

Formula: Anis ~ LigBndGen(l, myKd, 10, myAu, myAb)

Parameters:
     Estimate Std. Error t value Pr(>|t|)    
myKd 2.183208   0.429515   5.083 0.000269 ***
myAu 0.088257   0.002243  39.344 4.69e-14 ***
myAb 0.192403   0.002815  68.357  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.002221 on 12 degrees of freedom

Number of iterations to convergence: 4 
Achieved convergence tolerance: 7.88e-07


dfexport <- data.frame(l, Anis)
write.csv(dfexport,"Anis_Kd2_Et10_Au0.09_Ab0.19.csv", row.names = FALSE)

fb = 1+(Anis-0.18)/(0.18-0.11)
plot(fb/l,fb)


 # Simulating SPR
#
#  Craig Martin    Chem 728   2021


# Wrap everything in a user function (not necessary, but easier to tweak below)

# the following sets defaults for some parameters (that then become optional)
EnzKin <- function(t0=0, tf, tincr=(tf-t0)/1000, pkon=0.10, pkoff=0.05, E0=0.5, D0=50, ED0=0.0, tOn=50, tOff=400) {

	# create a time range
	time <- seq(t0, tf, by = tincr)

	# parameters:
	parameters <- c(kon = pkon, koff = pkoff)

	# initial condition:
	state <- c(E = E0, D=D0, ED=ED0)

	# R function to calculate the value of the derivatives at each time value
	# Use the names of the variables as defined in the vectors above
	# define in same order as specified above in state
	multiKin <- function(t, state, parameters){
	
	  with(as.list(c(state, parameters)), {
	  	if ((t<tOn) || (t>tOff)) {vkon=0} else {vkon =kon}
	  
		dE <-  -vkon*E*D + koff*ED
		dD <-  0 #-vkon*E*D + koff*ED
		dED <- vkon*E*D - koff*ED
		
		# return derivatives in same relative order as specified above in state
		return(list(c(dE,dD,dED)))
	  })
	}  ## end of function multiKin

	## Integration with 'ode' - ordinary differential equations
	out1 <- ode(y = state, times = time, func = multiKin, parms = parameters)
	
	#plot(out1)

	# get results as a dataframe
	df <- as.data.frame(out1)
	

	# return a list with things we might want to access directly in plotting, etc
	outl <- list("output"=out1, "t"=time, "E"=df$E, "D"=df$D, "ED"=df$ED )
	
	#plot( df$t, df$ED, col="black", type="l", xlab="Time (s)", ylab="Concentration", ylim=c(0,0.5))
	#lines(df$t, df$E, col="purple")
	#lines(df$t, df$D, col="red")


	return(outl)
 }

# You can see from above, how you might output a "y-value" that could feed into nls

# call the above function (you can omit optional parameters)
 out <- EnzKin(tf = 1500, tOn=100, tOff=500, pkon=0.0002, pkoff=0.005)
 


# plot the results (this will auto-scale to the product range; over-ride if desired)
#plot( out$t, out$ED, col="black", type="l", xlab="Time (s)", ylab="Concentration", ylim=c(0,0.5))
#lines(out$t, out$E, col="purple")
#lines(out$t, out$D, col="red")

plot( out$t, out$ED, col="black", type="l", xlab="Time (s)", ylab="Concentration", ylim=c(0,0.5))


#legend(200, 3, c("P", "E", "ES", "S"), col = c("green", "purple", "red", "blue"), lty=c("solid","solid","solid","solid"))



x <- 240:500

# A single absorption band, in wavelength space
spectrum <- function(x, lmax, lwid, inten)(inten*dnorm(1/x, 1/lmax, sd=(1/lmax - 1/(lmax+lwid))))

# Scattering function, artificially intensity normalized a bit
scattr <- function(x,intenSc) (mean(x)^4 * intenSc / x^4)

# Single function, combining 1 absorption band with scattering
spectrumScatt <- function(x,lmax,lwid,inten,intenSc) (spectrum(x,lmax,lwid,inten)+scattr(x,intenSc))

plotspecscatt <- function(x, lmax, lwid, inten,intenSc) {

	plot(x,spectrumScatt(x,lmax,lwid,inten,intenSc),type="l",xlab="wavelength (nm)",ylab="Absorption")
	
	plot(x,spectrumScatt(x,lmax,lwid,inten,0),type="l",xlab="wavelength (nm)",ylab="Absorption")
	
	plot(x,spectrumScatt(x,lmax,lwid,inten,intenSc),type="l",xlab="wavelength (nm)",ylab="Absorption")
	lines(x,spectrumScatt(x,lmax,lwid,inten,0),lty="dashed")
	lines(x,spectrumScatt(x,lmax,lwid,0,intenSc),lty="dotted")
	}
	
plotspecscatt(x,260,20,10,2000)

# ============= The following is a fancy tool, not discussed in class =============

# Note that proteins absorb as follows
#   Trp - 287 nm, 260 nm (this is very crude; there are MORE bands!!!)
#	Tyr - 270 m, 212 nm (also a bit crude)
#   
# A more complete function, allowing for any number of peaks
#  In this case, one passes a list of lists to specify multiple electronic transitions

spectraScatt <- function(x,specDef,intenSc) {

	# create a vector of zero's
	specAddr <- rep(0,length(x))

	# add spectra to that, one at a time
	for (specval in specDef) {
		specAddr <- specAddr + spectrum(x,specval[1],specval[2],specval[3])
	}
	
	# add in scattering
	specAddr <- specAddr + scattr(x,intenSc)

	return(specAddr)
}

# User values here >>>>>>
spec1 <- c(287,10,4)
spec2 <- c(260, 6,3)
spec3 <- c(270, 5,3)
spec4 <- c(212,10,6)
spec <- list(spec1,spec2,spec3,spec4)


y <- spectraScatt(x,spec,2000)

plot(x,y,type="l")

icol <- 1
for (specval in spec) {
	lines(x,spectrum(x,specval[1],specval[2],specval[3]),lty="dashed", col=icol)
	icol <- icol + 1
	}
	
lines(x,scattr(x,2000),lty="dotted")


x <- 240:500

# A single absorption band, in wavelength space
spectrum <- function(x, lmax, lwid, inten)(inten*dnorm(1/x, 1/lmax, sd=(1/lmax - 1/(lmax+lwid))))

# Scattering function, artificially intensity normalized a bit
scattr <- function(x,intenSc) (mean(x)^4 * intenSc / x^4)

# Single function, combining 1 absorption band with scattering
spectrumScatt <- function(x,lmax,lwid,inten,intenSc) (spectrum(x,lmax,lwid,inten)+scattr(x,intenSc))

plotspecscatt <- function(x, lmax, lwid, inten,intenSc) {

	plot(x,spectrumScatt(x,lmax,lwid,inten,intenSc),type="l",xlab="wavelength (nm)",ylab="Absorption")
	
	plot(x,spectrumScatt(x,lmax,lwid,inten,0),type="l",xlab="wavelength (nm)",ylab="Absorption")
	
	plot(x,spectrumScatt(x,lmax,lwid,inten,intenSc),type="l",xlab="wavelength (nm)",ylab="Absorption")
	lines(x,spectrumScatt(x,lmax,lwid,inten,0),lty="dashed")
	lines(x,spectrumScatt(x,lmax,lwid,0,intenSc),lty="dotted")
	}
	
plotspecscatt(x,260,20,10,2000)

# ============= The following is a fancy tool, not discussed in class =============

# Note that proteins absorb as follows
#   Trp - 287 nm, 260 nm (this is very crude; there are MORE bands!!!)
#   Tyr - 270 m, 212 nm (also a bit crude)
#   
# A more complete function, allowing for any number of peaks
#  In this case, one passes a list of lists to specify multiple electronic transitions

spectraScatt <- function(x,specDef,intenSc) {

	# create a vector of zero's
	specAddr <- rep(0,length(x))

	# add spectra to that, one at a time
	for (specval in specDef) {
		specAddr <- specAddr + spectrum(x,specval[1],specval[2],specval[3])
	}
	
	# add in scattering
	specAddr <- specAddr + scattr(x,intenSc)

	return(specAddr)
}

# User values here >>>>>>
spec1 <- c(287,10,4)
spec2 <- c(260, 6,3)
spec3 <- c(270, 5,3)
spec4 <- c(212,10,6)
spec <- list(spec1,spec2,spec3,spec4)


y <- spectraScatt(x,spec,2000)

plot(x,y,type="l")

icol <- 1
for (specval in spec) {
	lines(x,spectrum(x,specval[1],specval[2],specval[3]),lty="dashed", col=icol)
	icol <- icol + 1
	}
	
lines(x,scattr(x,2000),lty="dotted")



